Posts etiquetados ‘Elon Musk’

La verdad es que no esperaba demasiado. Me olía a que, dada la pobreza el estado del arte, no se podía presentar nada demasiado revolucionario, pero ¿quién sabe? Estamos hablando de Elon Musk, ese que consiguió hacer aterrizar cohetes y mandó un Tesla Roadster al espacio… Pero no, nada nuevo bajo el sol: el típico show grandilocuente al que los multimillonarios americanos nos tienen acostumbrados con la misma poca chicha que la mayoría de su cine.

Bien, ¿y qué nos presentaron? Lo único interesante ha sido  una mejora en la miniaturización del sistema: los electrodos que utiliza Neuralink v0.9  son diez veces más finos que un cabello humano, lo cual permite que cuando se implantan esquiven mejor venas y arterias, evitando el sangrado y la inflamación. Son menos invasivos que los modelos anteriores. Del mismo modo, su menor tamaño les hace ganar en precisión. Uno de los retos más importantes de las técnicas de monitorización cerebral es la precisión: conseguir captar la actividad de solo el grupo de neuronas que nos interesa, apagando el ruido de todo lo demás. Eso es muy difícil con técnicas no invasivas (sin meter electrodos en el cerebro) y con las técnicas invasivas disponibles la precisión todavía es muy baja. Además, los electrodos de Neuralink pueden captar 1024 canales de información, lo que es diez veces más que los cien que se venían manejando en los dispositivos comerciales al uso. Y hasta aquí da de sí la novedad. Todo lo demás ya se había hecho. Kevin Warwick, de la Universidad de Reading, ya se implantó bajo la piel un chip de radiofrecuencia que le permitía hacer cosas como encender y apagar luces, abrir puertas, etc. Esto fue en 1998, hace ya un poquito. O si queremos un ejemplo patrio, el neurocientífico Manuel Rodríguez Delgado implantó unos electrodos en el cerebro de un toro al que paraba en seco mediante un mando cuando éste se dirigía hacia él para embestirle. Tecnología inalámbrica de control mental en 1963. Hace ya 57 años de esto. Hoy hay miles de personas con implantes cocleares que mejoran la audición de pacientes sordos y también existen implantes electrónicos de retina que devuelven parcialmente la visión a personas ciegas.

¿Y dónde está la trampa? Musk dice que con este dispositivo se podrán tratar multitud de trastornos tales como la ansiedad, la depresión, la ansiedad, el insomnio, pérdidas de memoria… ¡Maravilloso! ¿Cómo? Y aquí se acaba la presentación. Es cierto que tenemos ciertos estudios que avalan que hay ciertas mejoras en pacientes a los que se electroestimula, por ejemplo, en el caso del Parkinson. También, hay multitud de experimentos en los que conseguimos ciertos cambios conductuales, simplemente, bombardeando eléctricamente tal o cual zona del cerebro, pero de ahí a curar la depresión… ¡va un universo! Y es que Musk parte de un terrible error demasiado común hoy en día: pensar que el cerebro es, por completo, un computador, en el sentido de pensar que dentro del cerebro solo hay una especie de larguísima maraña de cables. Nuestras neuronas funcionan eléctricamente sí, pero solo a un nivel. En ellas hay una infinidad de interacciones bioquímicas aparte de lanzar un pulso eléctrico por el axón. Y muchísimas de ellas las desconocemos. De hecho, la neurociencia está todavía en pañales. Nuestro conocimiento del cerebro es todavía terriblemente superficial. Entonces, ¿cómo justificar que solo mediante la estimulación eléctrica vamos a hacer tantas cosas? No se puede porque, seguramente, no se va a poder hacer así.

Musk nos está vendiendo que con su interfaz va a poder, literalmente, leer la mente. No colega, tus electrodos captarán ecos de la actividad mental, como yo escucho el ruido del motor del coche cuando voy conduciendo. Actualmente no sabemos cómo el cerebro genera emociones, pensamientos, recuerdos, consciencia… Tenemos algunas pistas sobre en qué zonas aproximadas puede ocurrir cada una de estas cosas, pero poco más. Obviamente, saber la localización de un suceso no es saber todavía demasiado del suceso. Si yo oigo el ruido del motor debajo del capó podré inferir que, seguramente, el motor está debajo del capó, pero eso no me dice casi nada de cómo funciona el motor. Por ejemplo, sabemos que en el hipocampo es donde se generan nuevos recuerdos pero, ¿cómo se generan? ¿Y dónde y cómo se guardan en la memoria? Silencio vergonzoso.

A mí, cuando en estas infructuosas discusiones en la red, alguien se me ha puesto chulito igualándome la actividad neuronal al pensamiento, suelo retarle a que me explique todo el proceso causal que va desde que yo, ahora mismo, decido pensar en mi abuela hasta que en mi mente aparece su imagen, únicamente mediante lo que sabemos de la neurona ¿Cómo diablos se genera una “imagen mental” mediante disparos eléctricos o vaciando vesículas sinápticas de neurotransmisores químicos? ¿Cómo consigue una molécula de acetilcolina que el recuerdo de mi abuela se quede fijado en mi mente? ¿Cómo hacen las moléculas de serotonina o de dopamina que yo tenga sensaciones agradables al pensar en ella? No tenemos ni remota idea. O le reto a qué me diga en qué se parece el paso de un pulso eléctrico por un conjunto de células mielinizadas al recuerdo fenoménico de mi abuela ¿En qué se asemejan los colores y rasgos de la cara de mi abuela en la imagen que parece proyectarse en mi mente a los procesos bioquímicos que ocurren en mi cerebro para que digamos que ambas cosas son lo mismo? Silencio vergonzoso. Con total certeza, el cerebro hace muchísimas más cosas que transmitir impulsos eléctricos entre células nerviosas y, por tanto, el cerebro no es un circuito electrónico tal y como piensa Musk, por lo que sus electrodos van a tener un alcance mucho más limitado de lo que nos ha hecho creer. Y en el mejor de los casos, suponiendo que al final, por un increíble golpe de suerte, Musk acertara y su Neuralink nos salvan de todos los males, su modus operandi no es éticamente correcto: no se pueden vender promesas, hay que vender hechos consumados.

Otra estrategia que suelen utilizar estos visionarios tecnológicos es con un error o sesgo que solemos cometer a la hora de analizar el desarrollo de cualquier tecnología o programa de investigación científica. Consiste en tender a pensar que una tecnología que en el presente va muy bien, seguirá progresando indefinidamente hacia el futuro. Por ejemplo, si ahora tenemos Neuralink versión 0.9, podríamos pensar: bueno, la 0.9 todavía no hace mucho pero espera a que llegue la 10.0 ¡Esa ya nos permitirá volcar Wikipedia entera en el cerebro! NO, de que una tecnología sea ahora puntera no podemos inferir, de ninguna manera, que seguirá siéndolo. De hecho, la historia de la ciencia y la tecnología nos ha mostrado multitud de investigaciones muy espectaculares en principio pero que no fueron a más. Por ejemplo, si pensamos que la inteligencia artificial es ahora una disciplina muy a la vanguardia, hay que ver que ha pasado por varios inviernos en los que quedó completamente olvidada. Es muy posible que el hoy tan alabado deep learning pase de moda en un tiempo y otras tecnologías ocupen su lugar ¿Por qué? Porque esas investigaciones o desarrollos se encuentran, de repente, con problemas que se enquistan y que quizá tardan diez, veinte, cincuenta años en resolverse o, sencillamente, no se resuelvan nunca. También tendemos a pensar que el progreso tecno-científico todo lo puede, que, al final, todo llegará y que solo es cuestión de tiempo. No, eso es un mito sacado de la más barata ciencia-ficción. No hay ninguna inferencia lógica que sostenga este progreso imparable hacia adelante. Verdaderamente, la ciencia y la tecnología son cosas mucho más humildes de lo suele pensarse.

No obstante, partiendo una lanza a favor de Musk, también hay que decir que el hombre, al menos, dedica su talento y fortuna a desarrollar tecnologías. Podría haberse comprado un equipo de fútbol o puesto a coleccionar yates, y en vez de eso emprende proyectos que, al menos a priori, tienen una finalidad pretendidamente positiva para la humanidad. En este sentido Musk está muy bien y ojalá todos los multimillonarios del mundo se parecieran un poquito más a él. Al menos, tal y como no se cansan de repetir su legión de seguidores en la red, él es valiente, se arriesga y emprende intentando llevar las cosas a cabo. El problema de Musk es que está en la onda del transhumanismo trasnochado de la Universidad de la Singularidad de Ray Kurzweil y cía. Esta gente defiende ideas muy discutibles tales como el el advenimiento de una inteligencia artificial fuerte en las próximas décadas, o la consecución de la inmortalidad, ya sea eliminando el envejecimiento mediante nuevas técnicas médicas, ya sea subiendo nuestra mente a un ordenador (mind uploading). Lo malo no está en que defiendan esas ideas (¡Yo quiero ser inmortal!), lo malo es que lo hacen a partir de una más que endeble base científica, y eso en mi pueblo se llama vender humo.

De este tema vamos a hablar este domingo a las 12:00 en Radio 3 en el célebre programa “Fallo de sistema”. Estaré junto a personas del peso de Ramón López de Mántaras, director del Instituto de Investigación de Inteligencia Artificial del CSIC; Juan Lerma, editor en jefe de Neuroscience; Manuel González Bedía, asesor en el Ministerio de Ciencia, Innovación y Universidades; Liset Menéndez, líder del Laboratorio de Circuitos Neuronales del Instituto Cajal; o el tecnohumanista Pedro Mujica,  impulsor de IANÉtica.  He de decir que nunca he estado sentado en una mesa  con personas de tanto nivel científico. Es la flor y nata de la ciencia española. Así que yo voy a estar bastante calladito escuchando y aprendiendo. No os lo perdáis.

Cuando pensamos en cómo implementar un programa capaz de manejar competentemente un lenguaje, lo primero que se nos pasa por la cabeza es enseñar a la máquina gramática. Hay que saber de sujetos, predicados, objetos directos y complementos circunstanciales. Y también semántica. Tendríamos que conseguir que el programa comprendiera en algún sentido los significados de las palabras para que no articulara únicamente frases sintácticamente correctas, sino también frases con sentido. Eso es aún más difícil. Los filósofos del lenguaje llevan ya un largo rato intentando comprender qué quiere decir que algo significa algo y todavía no lo tienen demasiado claro. Podemos crear un diccionario… Bien, todo esto ya se ha intentado y, desgraciadamente, no se ha conseguido demasiado… hasta ahora. El lenguaje se había mostrado como mucho más rico e inmanejable de lo que nadie hubiera supuesto y tareas como la traducción automática de idiomas o el dominio competente de la conversación se han mostrado mucho más complicadas de lo que los pioneros de la inteligencia artificial supusieron. Pero ahora algo ha cambiando ¿Nadie ha caído en lo bien que va funcionando el traductor de Google?

Una técnica interesante es la llamada word embedding. Codificamos cada palabra con un vector de N dimensiones. La distancia entre vectores expresaría la distancia semántica entre dos palabras. Por ejemplo, la palabra “luna” estaría más cerca en un espacio de N dimensiones, de la palabra “noche” que de la palabra “destornillador”. Así se crea una red semántica que resulta muy útil en determinadas tareas como el análisis de sentimientos. Podríamos clasificar textos en función de lo cerca o lejos que se encuentre la suma de todos sus vectores a la palabra “tristeza” para comparar el estado de ánimo de sus escritores. De la misma forma podríamos comparar textos escritos por suicidas para poder predecir la tendencia a quitarse la vida de gente a partir de las últimas cosas que escribe.

Nótese esta concepción geométrica del significado: las palabras significan en función de su posición con respecto a otras palabras. No hay nada más fuera de esa distancia que nos pueda aportar algo sobre el significado de la palabra. Eso choca con nuestra intuición. Solemos manejar naturalmente una teoría representacionista del lenguaje en la que las palabras significan porque representan un objeto del mundo. La palabra “manzana” no es absurda porque existen manzanas reales que aparecen de alguna extraña forma en nuestra mente cuando la oímos pronunciar. Sin embargo, una red semántica es un sistema cerrado que solo remite a elementos dentro de sí misma. Es, por así decirlo, completamente solipsista.

Pero es que si esto nos parece que se aleja de nuestra forma de comprender el lenguaje, las técnicas que utiliza el actual deep learning y que está generando una grandísima expectación, se alejan muchísimo más. El modelo de lenguaje que usan arquitecturas como el actual GPT-3 y sus predecesores, así como Google BERT, T5 o ELMo, es lo que se conoce como una semántica distribuida. Se basa en utilizar la gran potencia del Big Data para analizar frecuencias y cercanías de palabras, tokens o letras. La versión larga de GPT-3 analiza 175 mil millones de parámetros (su antecesor, GPT-2, analizaba tan solo 1.500 millones. El crecimiento ha sido de dos órdenes de magnitud) que han sido entrenados con una versión filtrada del dataset Common Crawl con 410.000 millones de tokens de tamaño (sumando Webtext 2, Books 1 y 2 y toda Wikipedia). Es, que yo sepa, la arquitectura de redes neuronales más grande jamás construida hasta la fecha.

GPT-3 está programado para generar texto a partir de otro texto dado. Lo interesante es que para acertar a la hora de generar ese texto tiene que saber realizar muchas tareas diferentes. Por ejemplo, si yo le escribo como entrada “2+2=”, para responder correctamente “4” debería saber sumar (o, por fuerza fruta, tener unas inmensas tablas de resultados de sumas en su memoria), o si yo escribo “Laura es inteligente, egoísta y perezosa ¿Cuál es su mejor cualidad?”, para responder correctamente el programa ha de saber que la inteligencia suele considerarse como una cualidad positiva mientras que el egoísmo y la pereza no (o, por fuerza bruta, disponer de textos con algún parecido en donde se ha respondido de forma adecuada). Es decir, lo interesante de GPT-3 es que para completar texto hay que saber realizar muchas tareas diferentes que parecen requerir habilidades cognitivas superiores ¿Las posee verdaderamente?

Los mejores resultados obtenidos vienen porque GPT-3 utiliza las revolucionarias redes de tipo TRANSFORMER, una nueva arquitectura que ha superado a las tradicionales redes recurrentes o memorias a largo plazo (LSTM) que solían utilizarse. Éstas estaban diseñadas para poder almacenar información en la que importa el orden temporal, pero esa memoria a la hora de trabajar con grandes secuencias texto era un tanto limitada, de modo que las primeras frases que completaban solían ser correctas, pero el nivel de acierto se degradaba mucho cuando avanzaba en el escrito. Los transformers han mejorado ese aspecto ya que pueden analizar en paralelo amplias secuencias de texto y, lo más destacable, poseen un mecanismo de atención que les permite valorar cada token en función de su relevancia para la tarea a realizar, lo cual ha demostrado una gran efectividad que ha terminado por marcar una gran distancia con sus antecesores. Tienen una cierta capacidad de atención hacia el contexto que se ha mostrado muy eficaz.

Pero en lo referente a la comprensión del lenguaje se ha dado un paso atrás con respecto a otras arquitecturas. Si recordamos el ya pasado de moda WATSON de IBM, que machacaba al personal jugando al Jeopardy!, era un programa clásico, sin redes neuronales ni nada por el estilo, pero su sistema basado en la tecnología DeepQA, combinaba diversas técnicas de recuperación de información, lenguaje natural, representación del conocimiento, razonamiento y aprendizaje. Su conocimiento tenía cierta semántica (se catalogada el significado por regiones mediante unos algoritmos denominados anotadores) y cuando tenía que responder una pregunta, analizaba las respuestas posibles teniendo en cuenta técnicas gramaticales. En la programación de WATSON había mucho más conocimiento del lenguaje y de su significado que en GPT-3. Y esto da para otra reflexión: ¿las redes neuronales artificiales son el futuro o tan solo son una moda que, aunque dé ciertos frutos, pasará? Tendemos, con demasiada facilidad, a quedarnos fascinados por nuestro presente y nos cuesta creer que lo que hoy valoramos como maravilloso mañana quizá no lo sea.

No obstante el solipsismo semántico de GPT-3, solo lo es en cierto sentido. No tiene sensores que le den información del exterior, está completamente desconectado de la percepción y de la acción, pero eso no le hace carecer de toda semántica. Al ser entrenado con textos escritos por personas GTP-3 adquiere la semántica de esas personas. Si sabe que a un “Hola, ¿qué tal?” cabe responder “Bien, gracias” es porque eso tenía sentido en textos que leyó. Por tanto, no podemos decir que GPT-3 carece de semántica, sino más bien todo lo contrario, tiene montañas de semántica, toda aquella de las millones de páginas con las que ha entrenado solo que… él no lo sabe. De hecho, sigue siendo una máquina esencialmente sintáctica, es decir, solo copia y pega trozos de texto, aunque para pegarlos bien se aprovecha del conocimiento semántico generado por otros.

GPT-3 es lo que el filósofo Ned Block llamaría un enorme blockhead, una clarísima habitación china de Searle: un sistema de fuerza bruta capaz de manejar el lenguaje con competencia y que, si da algo más de sí, podría llegar a pasar el test de Turing sin comprender ni una sola palabra de lo que dice. Eso sí, todavía está lejos de conseguirlo. Existen varios artículos que muestran la fragilidad de este tipo de modelos. Por ejemplo, un reciente estudio presentaba los Universal Adversarial Triggers para atacar modelos de NLP, que conseguían, entre otras cosas, que cuando GPT-2 se enfrentaba a la prueba del dataset SQuAD, respondiera en un 72% de las preguntas “To kill american people”, o que al hacerlo con el dataset SNLI, bajara en su rendimiento de un 89,94 a un 0,5%. En otro estudio, McCoy, Pavlick y Linzen, crearon un dataset llamado HANS pensado específicamente para que susodichos modelos fallaran. La idea era que, según los autores, funcionan mediante heurísticos (técnicas de búsqueda) que van bien para casos muy frecuentes pero que fallan estrepitosamente ante cualquier tipo de excepción que se salga de lo normal. Así estudiaron tres heurísticos:  Asumir que una premisa implica todas las hipótesis construidas a partir de palabras en la premisa (Lexical Overloop), asumir que una premisa implica todas sus subsiguientes contiguas (Subsecuence) y asumir que una premisa implica todos los subárboles completos en su árbol de análisis (Constituent). Entonces diseñaron HANS con todo tipo de ejemplos en los que estas heurísticas fallan y los datos les dieron la razón: BERT puntuó bajísimo.

El psicólogo Gary Marcus y el informático de la Universidad de Nueva York Ernest Davis sometieron a GPT-3 a una prueba informal de 157 preguntas acerca de razonamiento biológico, físico, psicológico, non sequiturs, seguimiento de objetos e individuos a lo largo de una frase, etc. La máquina acertó 71 (un 45%) mostrándose, igualmente, muy débil. Veamos tres ejemplos (en negrita la continuación del texto generada por GPT-3:

You poured yourself a glass of cranberry juice, but then you absentmindedly poured about a teaspoon of grape juice into it. It looks okay. You try sniffing it, but you have a bad cold, so you can’t smell anything. You are very thirsty. So you drink it.

You are now dead.

Confunde el zumo de uva con veneno.

If you break a glass bottle that holds toy soldiers, the toy soldiers will probably

  1. be angry
  2. be sad
  3. be happy
  4. be scared.

If you break a glass bottle that holds toy soldiers, the toy soldiers will probably be angry.

Los soldaditos de juguete no tienen sentimientos.

At the party, I poured myself a glass of lemonade, but it turned out to be too sour, so I added a little sugar. I didn’t see a spoon handy, so I stirred it with a cigarette. But that turned out to be a bad idea because it kept falling on the floor. That’s when he decided to start the Cremation Association of North America, which has become a major cremation provider with 145 locations.

Falla en la respuesta y luego balbucea estupideces.

Sin embargo, a pesar de esta debilidad, de esta falta de comprensión, todavía tiene un punto a su favor: puede aprender más. En 2012 el investigador canadiense Hector Levesque propuso una alternativa (o más bien una concreción) al test de Turing: el test de esquemas de Winograd. En esta prueba se hacen a la máquina una serie de preguntas conocidas como pares de Winograd que tienen la cualidad de que para responderlas correctamente hace falta cierto conocimiento implícito o de sentido común. Un ejemplo:

Frank felt crushed when his longtime rival Bill revealed that
he was the winner of the competition. Who was the
winner?
Answer 0: Frank
Answer 1: Bill

Para acertar hace falta saber que si tu rival de toda la vida te gana sueles sentirte mal, es decir, tener un conocimiento previo que no puede deducirse de los contenidos de la pregunta. El test de esquemas de Winograd tiene la virtud de que un sistema diseñado para hacerse pasar por humano simplemente fingiendo (uno tipo a la ELIZA de Weizenbaum) fallaría. Para superar el test hace falta, de verdad, mostrar inteligencia y no solo aparentarla. Entonces, es de suponer que las frágiles nuevas arquitecturas de NLP como GPT-3 no lo superarán… ¿o sí?

Pues lo pasan ¿Cómo? Porque ya existe un dataset llamado WinoGrande que sirve para medir a los programas en este tipo de problemas, pero con el que también podemos  entrenar a nuestro programa para que lo supere. GPT-3 consiguió un impresionante éxito del 70,2% en él sin ningún ejemplo previo que le orientara (zero-shot learning). De la misma forma, los diseñadores de HANS notaron que cuando los programas que antes lo hacían muy mal se entrenaban con ejemplos similares a los de HANS, su rendimiento mejoraba mucho. Y es que aquí parece estar la clave: ¿que nuestro sistema no entiende una tarea? No importa, entrénalo con miles de ejemplos y, al final, lo hará bien aunque no la entienda. Es como el famoso teorema del mono infinito: si tenemos millones de monos tecleando al azar en máquinas de escribir durante miles de años, al final, necesariamente, alguno escribirá el Quijote. GPT-3 es como un gigantesco savant, un imbécil que tiene en su memoria todo lo que la humanidad ha escrito y que ha sido entrenado con un poder de cómputo tan grande que siempre encuentra la palabra exacta. Verdaderamente no lo hace siempre, todavía es bastante peor que la campaña de publicidad de OpenIA nos quiere hacer ver, pero en el futuro podría seguir mejorando. Y aquí es donde viene la reflexión con la quiero concluir: ¿cuál es el límite de la fuerza bruta?  Los informáticos, amantes de la elegancia matemática, siempre han pensado que la inteligencia artificial fuerte (la strong IA) estaría en un programa fruto de una genialidad, en algo simple pero sumamente inteligente. Por el contrario, la fuerza bruta siempre ha gozado de mala fama: es la tosquedad, la estupidez por definición ¿cómo de ahí va a salir algo bueno? Bien, ¿y si eso solo fuera un prejuicio? Y si, sencillamente, por fuerza bruta pudiese conseguirse todo. El número de respuestas válidas en una conversación es potencialmente infinito, pero podría acotarse en un subconjunto que, si nuestra capacidad de cómputo sigue yendo hacia arriba, podríamos llegar a manejar. Quizá la reflexión que nos espera cuando tengamos computación cuántica y 5G sea esa: ¿qué es lo que se puede y no se puede hacer con una inimaginable fuerza bruta?

P.D.: La empresa OpenIA se creó, decían, sin ánimo de lucro. Cuando sacaron GPT-2 no quisieron ni liberar el código ni dejar que lo probásemos por miedo, decían, a que se utilizara para malos usos. Pues bien, según me llega en un tweet de Gary Marcus, para octubre, quien quiera o pueda pagar, podrá usar GPT-3 sin ningún problema (Esto para los que piensen que Elon Musk va a salvar la humanidad).

Aunque Descartes, y tantos otros antes que él, definiera la mente por su inextensión, es decir, por no ocupar lugar alguno en el espacio, por ser inmaterial, o si se prefiere, espiritual, todo el mundo con dos dedos de frente, ubica la mente “dentro” del cerebro. Sin saber muy bien qué tipo de entidad ontológica es, sin poder siquiera definirla con precisión, todo el mundo cree que se piensa con la cabeza. Nadie acepta de buen grado que le digas que su mente no está en ningún sitio, o que su último pensamiento está ubicado a 1.000 kilómetros de su cerebro.

Es más, dado el materialismo monista imperante en las ciencias de la mente, gran parte de la gente algo letrada en el tema apuesta por la teoría de la identidad: mi mente es equivalente a una serie de procesos físico-químico-biológicos que, en cuanto a tales, ocurren en una precisa ubicación espacial: mi tejido cerebral. Mi mente se forma, de alguna manera todavía no aclarada, entre esa increíblemente densa enredadera de neuronas que pueblan mi encéfalo.

Así que, solo por llevar la contraria y violentar un poco las mentes de mis brillantes lectores, vamos a ver una teoría clásica en filosofía de la mente  que pretende romper este “chauvinismo cerebral” de creer que los sucesos mentales solo ocurren “dentro” del cerebro: es la teoría de la mente extendida. Quizá la primera en plantearla fue la filósofa norteamericana Susan Hurley en su obra Conscioussness in Action de 1998, pero el texto clásico es el artículo de Andy Clark y David Chalmers The Extended Mind  del mismo año, y entró de lleno en el debate cuando Clark publicó el libro Supersizing the mind en 2008.

La teoría de la mente extendida es una consecuencia lógica del funcionalismo imperante en las ciencias cognitivas (ya lo describimos y lo criticamos aquí). El funcionalismo dice que los estados mentales son estados funcionales que conectan causalmente estímulos con respuestas (o estados funcionales con otros estados funcionales). En este sentido si yo quiero realizar una operación matemática y me valgo para ello de una calculadora de bolsillo, entre el input (por ejemplo, la visualización de los dos factores que voy a multiplicar) y el output (obtener el resultado), transcurren multitud de estados funcionales, unos “dentro” del cerebro y otros “fuera”. “Dentro”, por ejemplo, está mi miente ordenando a mis dedos qué teclas de la calculadora pulsar, y “fuera” estaría el microprocesador de la calculadora procesando los datos y mostrando en pantalla el resultado.

Si definimos los estados mentales por su función, es decir, por ser elementos causales en la cadena entre el estímulo y la respuesta, tanto mis pensamientos sobre que teclas pulsar como el funcionamiento del microprocesador de la calculadora, son eslabones causales de la cadena, ¿por qué decir  que solo los estados causales que están “dentro” de mi cabeza son estados realmente mentales, mientras que los que están “fuera” ya no lo serían? Supongamos que nos sometemos a los designios de Elon Musk y de su empresa Neuralink, y nos insertamos la calculadora en el cerebro, conectando sus circuitos a nuestros axones y dendritas neuronales. Entonces, si hiciésemos un cálculo ayudados por la calculadora, todo ocurriría “dentro” de nuestro cerebro ¿Ahora sí aceptamos lo que hace la calculadora como parte de nuestra mente y antes no? ¿Los criterios para distinguir lo mental son, únicamente, algo tan pobre como “dentro” y “fuera”?

Extendamos entonces la mente a lo bestia. Cuando usamos Google para buscar información, devolviéndonos Google la respuesta que buscábamos, nuestro proceso de causas y efectos funcionales ha viajado desde nuestra mente hasta diferentes servidores a lo largo del mundo, incluso ha podido ir al espacio y rebotar en antenas de satélites, hasta volver a nosotros… ¡Nuestros estados mentales se han extendido hasta el infinito y más allá! Seríamos, por utilizar terminología más guay, cíborgs cognitivos o mind cyborgs…

Según Clark, nuestra vida mental es un continuo negociar y re-negociar los límites de la mente con los diferentes dispositivos cognitivos que tenemos a nuestro alcance. Extendemos y reducimos la mente a cada momento: cada vez que encendemos la tele,miramos un reloj, nuestro móvil.. Lo interesante es que podríamos utilizar esta extensión para medir el potencial cognitivo de un individuo o sociedad: desde lo mínimo, un neanderthal escribiendo en la arena con un palo, hasta las actuales megalópolis de millones de individuos  hiperconectados entre ellos y con el resto del mundo, teniendo acceso a una incontable cantidad de información. Los hitos fundamentales en una historia de la humanidad concebida desde su capacidad de extensión mental serían la aparición del lenguaje, primero hablado y luego escrito (la extensión de la memoria), el desarrollo del cálculo y de sus herramientas que concluirían con la llegada del computador y, el estadio en el que nos encontramos: internet y su casi ilimitado acceso a todo tipo de datos.

Problemas: si la teoría de la mente extendida puede estar bien para medir la potencia cognitiva de un sistema, habría que entenderla únicamente como una etiqueta pragmática, como una forma de hablar útil en determinados contextos, ya tiene exactamente los mismos problemas del funcionalismo (como hemos dicho, no es más que una consecuencia lógica de éste): no explica la consciencia fenomenológica y no superaría la crítica de la caja china de Searle. Autores como Jerry Fodor, desde una perspectiva cerebrocéntrica o, Robert Rupert, desde todo lo contrario, han sido bastante críticos con ella. Y es que pasa lo de siempre: la explicación funcionalista de los estados mentales es muy incompleta y, llevada a su extremo, llega a ser confusa.

Ejemplo: de nuevo voy a realizar un cálculo extendiendo mi mente hacia una calculadora. Sin embargo, me doy cuenta de que no tiene pilas, así que bajo a la tienda de abajo de mi casa a comprar unas. Desafortunadamente no les quedan ¡Los vendedores de pilas están de huelga! Así, recorro decenas de tiendas pero en ninguna tienen nada. Viajo por toda España en busca de las pilas malditas, hasta que en un pequeño pueblecito perdido en los Pirineos, encuentro una tienda donde, al fin, las consigo. Después de tres meses de búsqueda vuelvo a mi casa, y puedo usar la calculadora para terminar mi cálculo… ¿Todo este tedioso proceso de búsqueda geográfica de tiendas de pilas formaría parte de un proceso cognitivo? ¿Lo englobaríamos dentro de un proceso mental? Echar gasolina al coche, conducir, preguntar a transeúntes, usar el GPS… ¿todos son estados mentales? ¿Dónde queda el límite entre lo que es y lo que no es un estado mental si cualquier cosa es susceptible de participar en un proceso causal?