Posts etiquetados ‘Roger Penrose’

Las dos posturas ontológicas que tradicionalmente han dominado la historia de la filosofía han sido, primero, el dualismo de propiedades (anteriormente conocido como dualismo platónico o cartesiano) y, luego, el materialismo, siendo esta última la que domina en los ambientes intelectuales de corte cientificista de la actualidad.

El dualismo, en la medida en que sostiene la total independencia e incomunicación entre la mente y el cuerpo, es una teoría absurda. Aunque no sepamos cómo nuestro cerebro genera estados mentales, ni sepamos qué relación hay entre uno y otros,  tenemos claro que existe una estrecha relación. Creo que no hace falta ni mencionar, por obvio, lo que ocurre con nuestros estados mentales cuando bebemos mucho alcohol o cuando nos anestesian.

Y con respecto al materialismo ya sabéis mi postura : creo que no sabemos lo suficientemente bien qué es la materia para enarbolar la proposición “Todo lo que existe es x, siendo x materia” , como subrayaba la crítica de Moulines al materialismo y que discutimos largamente en este blog. Además, el materialismo siempre ha tenido, y tendrá, el problema de la conciencia como bestia negra: ¿Cómo explicar la existencia de estados mentales que no son claramente definibles en términos materiales? Las estrategias pasan por negar la existencia de tales estados, bien directamente (Ryle, Dennett o Patricia Churchland), bien reduciéndolos a estados funcionales (Fodor y, al principio, Putnam) o, directamente, hacerlos idénticos a los estados neuronales (Smart); o de modo casi embarazoso, evitando hablar de ellos (el conductismo en general). Desgraciadamente para todos ellos, los estados mentales se resisten a ser reducidos y ninguna de las propuestas parece satisfactoria. ¿Qué hacer entonces? ¿Es que cabe otra alternativa a ser materialista o dualista? Pienso que sí.

Una de las aportaciones más famosas de Wittgenstein en sus Investigaciones Filosóficas es el concepto de “parecidos de familia”.  Wittgenstein intenta definir qué es el lenguaje, pero se encuentra con una pluralidad de lenguajes diferentes (los que llamará juegos de lenguaje) a los que no encuentra una característica en común tal que nos sirva para la definición:

66. Considera, por ejemplo, los procesos que llamamos “juegos”. Me refiero a los juegos de tablero, juegos de cartas, juegos de pelota, juegos de lucha, etc. ¿Qué hay de común a todos ellos? – No digas: “Tiene que haber algo común a ellos o no los llamaríamos juegos” – sino mira si hay algo común a todos ellos. – Pues si los miras no verás por cierto algo que sea común a todos, sino que verás semejanzas, parentescos y, por cierto, toda una serie de ellos. Como se ha dicho: ¡no pienses, sino mira! Mira, por ejemplo, los juegos de tablero con sus variados parentescos. Pasa ahora a los juegos de cartas: aquí encuentras muchas correspondencias con la primera clase, pero desaparecen muchos rasgos comunes y se presentan otros. Si ahora pasamos a los juegos de pelota, continúan manteniéndose carias cosas comunes pero muchas se pierden – ¿Son todos ellos entretenidos? Compara el ajedrez con las tres en raya. ¿O hay siempre un ganar o perder, o una competición entre los jugadores? Piensa en los solitarios. En los juegos de pelota hay ganar y perder; pero cuando un niño lanza la pelota a la pared y la recoge de nuevo, ese rasgo ha desaparecido. Mira qué papel juegan la habilidad y la suerte. Y cuán distinta es la habilidad en el ajedrez y la habilidad en el tenis. Piensa ahora en los juegos de corro: Aquí hay el elemento del entretenimiento, ¡pero cuántos de los otros rasgos característicos han desaparecido! Y podemos recorrer así los muchos otros grupos de juegos. Podemos ver cómo los parecidos surgen y desaparecen.

Y el resultado de este examen reza así: Vemos una complicada red de parecidos que se superponen y entrecruzan. Parecidos a gran escala y de detalle.

Cuando observamos la realidad, contemplamos una ingente cantidad de clases de “cosas” entre las que solamente encontramos parecidos, sin conseguir vislumbrar nada que todas ellas tengan en común de tal modo que podamos decir que en la realidad únicamente hay x (tal como erróneamente hace el materialismo) pues, ¿qué tendrían en común un átomo, un dolor de muelas, un teorema matemático, la velocidad, los tipos de interés, la batalla de San Quintín y la digestión? Algunas similitudes, parentescos… parecidos de familia:

67. No puedo caracterizar mejor esos parecidos que con la expresión “parecidos de familia”; pues es así como se superponen y entrecruzan los diversos parecidos que se dan entre los miembros de una familia: estatura, facciones, color de los ojos, andares, temperamento, etc., etc. – Y diré: los ‘juegos’ componen una familia.

¿A qué postura nos llevaría aplicar la teoría de parecidos de familia de Wittgenstein a la ontología? A un pluralismo ontológico (n-ismo de propiedades si se quiere): existe un sólo mundo (no necesitamos un mundo platónico dónde existen los teoremas matemáticos ni otro mundo para los estados mentales como pasa con Popper o Penrose) pero en él hay muchas propiedades diferentes tal que no podemos definir cuál sería la característica común a todas ellas. Como dice Searle:

Hay montones de propiedades en el mundo: electromagnéticas, económicas, geológicas, históricas, matemáticas, por decir algunas. De manera que si mi posición es un dualismo de propiedades, en realidad debería llamarse pluralismo de propiedades, n-ismo de propiedades, dejando abierto el valor de n. La distinción verdaderamente importante no es la que puede darse entre lo mental y lo físico, entre la mente y el cuerpo, sino la que puede darse entre aquellos rasgos del mundo que existen independientemente de los observadores – rasgos como la fuerza, la masa y la atracción gravitatoria – y aquellos rasgos que son dependientes de los observadores – como el dinero, la propiedad, el matrimonio y el gobierno -. El caso es que, aunque todas las propiedades dependientes del observador dependen de la conciencia para su existencia, la conciencia misma no es relativa al observador. La conciencia es un rasgo real e intrínseco de ciertos sistemas biológicos como el suyo y el mío”.

John Searle, El misterio de la conciencia.

La mente, a pesar del materialismo, permanece irreductible a lo material. Sin embargo, no por ello hay que aceptar el dualismo. ¡Acepta el n-ismo de propiedades!


Roger Penrose dedicó bastante más tinta en defender  los argumentos de Shadows of Mind que en escribir dicha obra. En una de sus contrarréplicas, publicada en la revista Psyche (Enero, 1996), nos ofrece una de las versiones más claras de su famoso argumento.

Supongamos que todos los métodos de razonamiento matemático humanamente asequibles válidos para la demostración de cualquier tesis están contenidos en el conjunto F. Es más, en F no sólo introducimos lo que entenderíamos como lógica matemática (axiomas y reglas de inferencia) sino todo lo matemáticamente posible para tener un modelo matemático del cerebro que utiliza esa lógica (todos los algoritmos necesarios para simular un cerebro). F es, entonces, el modelo soñado por cualquier ingeniero de AI: un modelo del cerebro y su capacidad para realizar todo cálculo lógico imaginable para el hombre. Y, precisamente, ese es el modelo soñado porque la AI Fuerte piensa que eso es un ser humano inteligente. Así, cabe preguntarse: ¿Soy F? Y parece que todos contestaríamos, a priori, que sí.

Sin embargo, Roger Penrose, piensa que no, y para demostrarlo utiliza el celebérrimo teorema de Gödel, que venimos a recordar a muy grosso modo: un sistema axiomático es incompleto si contiene enunciados que el sistema no puede demostrar ni refutar (en lógica se llaman enunciados indecidibles). Según el teorema de incompletitud, todo sistema axiomático consistente y recursivo para la aritmética tiene enunciados indecidibles. Concretamente, si los axiomas del sistema son verdaderos, puede exhibirse un enunciado verdadero y no decidible dentro del sistema.

Si yo soy F, como soy un conjunto de algoritmos (basados en sistemas axiomáticos consistentes y recursivos), contendré algún teorema (proposiciones que se infieren de los axiomas de mi sistema) que es indecidible. Los seres humanos nos damos cuenta, somos conscientes de que ese teorema es indecidible. De repente nos encontraríamos con algo dentro de nosotros mismos con lo que no sabríamos qué hacer. Pero en esto hay una contradicción con ser F, porque F, al ser un conjunto de algoritmos, no sería capaz de demostrar la indecibilidad de ninguno de sus teoremas por lo dicho por Gödel… Una máquina nunca podría darse cuenta de que está ante un teorema indecidible. Ergo, si nosotros somos capaces de descubrir teoremas indecidibles es porque, algunas veces, actuamos mediante algo diferente a un algoritmo: no sólo somos lógica matemática.

Vale, ¿y qué consecuencias tiene eso? Para la AI muy graves. Penrose piensa no sólo que no somos computadores sino que ni siquiera podemos tener un computador que pueda simular matemáticamente nuestros procesos mentales. Con esto Penrose no está diciendo que en múltiples ocasiones no utilicemos algoritmos (o no seamos algoritmos) cuando pensemos, sólo dice (lo cual es más que suficiente) que, habrá al menos algunas ocasiones, en las que no utilizamos algoritmos o, dicho de otro modo, hay algún componente en nuestra mente del cual no podemos hacer un modelo matemático, qué menos que replicarlo computacionalmente en un ordenador.

Además el asunto se hace más curioso cuanto más te adentras en él. ¿Cuáles podrían ser esos elementos no computables de nuestra mente? La respuesta ha de ser un rotundo no tenemos ni idea, porque no hay forma alguna de crear un método matemático para saber qué elementos de un sistema serán los indecidibles. Esto lo explicaba muy bien Turing con el famoso problema de la parada: si tenemos un ordenador que está procesando un problema matemático y vemos que no se para, es decir, que tarda un tiempo en resolverlo, no hay manera de saber si llegará un momento en el que se parará o si seguirá eternamente funcionando (y tendremos que darle al reset para que termine). Si programamos una máquina para que vaya sacando decimales a pi, no hay forma de saber si pi tiene una cantidad de decimales tal que nuestra máquina tardará una semana, seis meses o millones de años en sacarlos todos o si los decimales de pi son infinitos. De esta misma forma, no podemos saber, por definición, qué elementos de nuestra mente son no computables. A pesar de ello, Penrose insiste en que lo no computable en nuestra mente es, nada más y nada menos, que la conciencia, ya que, explica él, mediante ella percibimos la indecibilidad de los teoremas. Es posible, ya que, aunque a priori no pudiéramos saber qué elementos no son decidibles, podríamos encontrarnos casualmente con alguno de ellos y podría ser que fuera la conciencia. Pero, ¿cómo es posible que nuestro cerebro genere conciencia siendo el cerebro algo aparentemente sujeto a computación? Penrose tiene que irse al mundo cuántico, en el que casi todo lo extraño sucede, para encontrar fenómenos no modelizables por las matemáticas y, de paso, resolver el problema del origen físico de la conciencia.

Las neuronas no nos valen. Son demasiado grandes y pueden ser modelizadas por la mecánica clásica. Hace falta algo más pequeño, algo que, por su naturaleza, exprese la incomputabilidad de la conciencia. Penrose se fija en el citoesqueleto de las neuronas formado por unas estructuras llamadas microtúbulos. Este micronivel está empapado de fenómenos cuánticos no computables, siendo el funcionamiento a nivel neuronal, si acaso, una sombra amplificadora suya, un reflejo de la auténtica actividad generadora de conciencia. ¡Qué emocionante! Pero, ¿cómo generan estos microtúbulos empapados de efectos cuánticos la conciencia? Penrose dice que no lo sabe, que ya bastante ha dicho…

O sea señor Penrose, que después de todo el camino hecho, al final, estamos cómo al principio: no tenemos ni idea de qué es lo que genera la conciencia. Sólo hemos cambiado el problema de lugar. Si antes nos preguntábamos cómo cien mil millones de neuronas generaban conciencia, ahora nos preguntamos cómo los efectos cuánticos no computables generan conciencia. Penrose dice que habrá que esperar a que la mecánica cuántica se desarrolle más. Crick o Searle nos dicen que habrá que esperar a ver lo que nos dice la neurología… ¡Pero yo no puedo esperar!

Además, ¿no parece extraño que la conciencia tenga algo que ver con el citoesqueleto de las neuronas? La función del citoesqueleto celular suele ser sustentar la célula, hacerla estable en su locomoción… ¿qué tendrá que ver eso con ser consciente? Claro que en el estado actual de la ciencia igual podría decirse: ¿qué tendrá que ver la actividad eléctrica de cien mil millones de neuronas con que yo sienta que me duele una muela?

Uno de los primeros experimentos que apuntaba cómo se lleva a cabo el procesamiento en el córtex visual fue el que les valió el Premio Nobel de 1981 a David Hubel y Tornsten Wiesel. En sus experimentos fueron capaces de demostrar que ciertas células del córtex visual del gato respondían a líneas en el campo visual que tenían un ángulo de inclinación particular. Otras células próximas respondían a líneas con diferentes ángulos de inclinación. A menudo no importaba qué era lo que formaba este ángulo. Podía ser una línea que señalaba la frontera entre la oscuridad y la luz o, por el contrario, entre luz y oscuridad, o simplemente una línea oscura sobre un fondo claro. Sólo la característica del “ángulo de inclinación” había sido abstraída por las células concretas que se estaban examinando. Pero otras células respondían a colores concretos, o a las diferencias entre lo que percibe cada ojo de modo que se pueda obtener la percepción de profundidad. A medida que nos alejamos de las regiones de recepción primaria encontramos células que son sensibles a aspectos cada vez más sutiles, de nuestra percepción de lo que vemos. Por ejemplo, la imagen de un triángulo blanco completo es percibida cuando miramos el dibujo [la imagen de arriba]; pero las líneas que forman el propio triángulo no están en realidad presentes en la figura sino que son inferidas. ¡Se han encontrado, en efecto, células en el córtex visual (en lo que se llama córtex visual secundario) que pueden registrar las posiciones de estas líneas inferidas!

Hubo diversas afirmaciones en la literatura, a comienzos de los años setenta, del descubrimiento de una célula en el córtex visual del mono que respondía sólo cuando se registraba en la retina la imagen de un rostro. Basada en esta información se formuló la “hipótesis de la célula de la abuela”, según la cual habría ciertas células en el cerebro que responderían ¡sólo cuando la abuela del sujeto entraba en la habitación! De hecho, hay descubrimientos recientes que indican que ciertas células responden solamente a palabras concretas. ¿Quizá esto vaya en camino de la verificación de la hipótesis de la célula de la abuela?

Roger Penrose en La nueva mente del Emperador

Ya comentamos cómo Turing define el concepto de algoritmo mediante las famosas máquinas que llevan su nombre. Así, habría Máquinas de Turing (MT) para encontrar el máximo común divisor entre dos números, resolver raíces cuadradas,ecuaciones de segundo grado… ¡para cualquier acción que pueda realizarse en un número finito de pasos! ¿Podría resolver alguno de los grandes enigmas de las matemáticas propuestos por Hilbert, tal como la peliaguda conjetura de Goldbach?

El genio de Turing se puso en acción: cualquier MT puede codificarse numéricamente. Simplemente se trata de establecer una función entre las instrucciones  de funcionamiento (lo que Turing llamaba la configuración-m) y números. Entonces cada MT tendrá un determinado número de identificación que la diferenciaría de las demás. A partir de aquí puede construirse una Máquina Universal de Turing, es decir, una máquina que pueda hacer lo que todas las demás MT hacen. Si cada MT tiene un código de identificación, podemos hacer una máquina tal que reciba como input tal código e, inmediatamente, devuelva lo que esa MT en concreto devuelve. Si, por ejemplo, le introducimos el código de identificación de la MT que genera la cadena de los números naturales, nuestra nueva máquina devolverá esa misma cadena de números. Esto es una Máquina Universal de Turing (MU), la cual, a su vez, tiene un número de identificación:

7244855335339317577198395039615711237952360672556559631108144796606505059404241090310483613

6323593656444434583822268832787676265561446928141177150178425517075540856576897533463569424

7848859704693472573998858228382779529468346052106116983594593879188554632644092552550582055

5989451890716537414896033096753020431553625034984529832320651583047664142130708819329717234

1505698026273468642992183817215733348282307345371342147505974034518437235959309064002432107

7342178851492760079759763441512307958639635449226915947965461471134570014504816733756217257

3446452273105448298078496512698878896456976090663420447798902191443793283001949357096392170

3904833270882596201301773727202718625919914428275437422351355675134084222299889374410534305

47104436869587640517812801194375308138706399427728231564252892375145654438990527807932411448

26142357286193118332610656122755531810207511085337633806031082361675045635852164214865423471

8742643754442879006248582709124042207653875426445413345174856629157429990950262300973373813

7724162172747723610206786854002893566085696822620141982486216989026091309402985706001743006

70086896759034473417412787425581201549366393899690581773859165405535670409281332221631410978

7108145997866959970450968184190629944365601514549048809220844800348224920773040304318842989

93931355266882349662101947161910701461968523192847482034495897709553561107027581748733327296

6789987984732840981907648512726310017401667873634776058572450369644348979920344899974556624

02937487668839751404451665707750060513883991668814072545544665222050724262392379211525318162

51253630509317286314220040645713052758023076651833519956891397481375049264296050100136519801

86945639498

Este es el número U según nos lo ofrece Roger Penrose en La nueva mente del emperador . Tiene 1.653 dígitos y, a priori, prometía ser la leche: en él, de algún modo, se encuentra la solución a todos los problemas matemáticos en tanto que todos los problemas matemáticos tengan solución en una serie de pasos finitos. Y, a pesar de lo que ahora veremos, lo fue: el ordenador desde el que estás leyendo esto es una muy refinada MU (No deja de ser fascinante que lo que en otras épocas fueron descubrimientos que sólo invitaban a soñar, son ahora realidades ordinarias).

Turing utiliza la MU para afrontar el gran problema de la decibilidad de las proposiciones de la matemática (el problema matemático de todos los problemas, el Entscheidungsproblem ): dado una proposición matemática cualquiera, ¿existe un método que nos digera si esa proposición es demostrable dentro del propio sistema? O dicho de otro modo: ¿existe un método que nos digera si la conjetura de Goldbach es demostrable? Turing fabula con la idea de que fuéramos introduciendo en la MU todas las cadenas numéricas posibles (ya que cada una de ellas representaría una MT concreta, aunque, lógicamente la inmensa mayoría darían máquinas absurdas que no funcionan o cuyo funcionamiento es circular). ¿Sería posible diseñar una nueva máquina que, dada una cadena numérica cualquiera, pudiera decidir si la MT que la genera no es circular, es decir, que es una MT perfectamente funcional? Turing llama a esta máquina D (MD). Si esta máquina fuera posible, el problema de la decibilidad (también llamado en este caso “problema de la parada”) se resolvería: la MD sería ese método para decidir, dada una proposición matemática cualquiera, si es demostrable dentro del propio sistema. ¡Las matemáticas serían completas y Hilbert sonreiría de felicidad! Todos los teoremas de las matemáticas estarían allí, como en un mundo platónico, esperando tranquilamente a que una nueva generación de matemáticos los resuelva…  ¡Todos los problemas matemáticos estarían dentro de U!

Pero nuestro gozo en un pozo: no es posible construir MD. Turing da dos pruebas: la primera se basa en la ingeniosa diagonalización de Cantor. Podemos ir agrupando en una tabla con filas y columnas toda la serie de cadenas numéricas que devuelve nuestra MU “cargada” con todas las MT concretas posibles que han sido seleccionadas como válidas por MD. Por ejemplo, tendríamos la secuencia de la MT que genera una serie infinita de unos, la que genera toda la serie de números naturales, etc. como mostramos en la tabla de aquí abajo. Podemos entonces dibujar una diagonal seleccionando el número que hay en la primera casilla de la primera fila, en la segunda casilla de la segunda, en la tercera de la tercera, etc. (en la tabla la marcamos en negrita).

1 1 1 1 1 1 1 1 etc
0 1 0 1 0 1 0 1 etc
1 2 3 4 5 6 7 8 etc
1 3 4 7 9 11 13 15 etc
2 4 6 8 10 12 14 16 etc
3 6 12 24 48 96 192 348 etc
2 3 5 7 11 13 17 19 etc
0 1 8 27 64 125 216 343 etc
1 4 9 16 25 36 49 64 etc

 

Podemos después agrupar los números de nuestra diagonal y hacer una nueva fila en la que, a cada número, le sumamos la unidad:

2 2 4 8 11 97 18 344 Etc+1

 

Realizar esta acción es un algoritmo, ya que seleccionar estas casillas y sumarles la unidad es un proceso que hemos hecho en un número finito de pasos (además corto, por lo que la MT necesaria para hacerla es trivial). Entonces, esta secuencia debería ser generada por nuestra MU “cargada” con todas las MT elegidas como correctas por MD, pero… ¡es imposible que la MU nos de esta secuencia! ¿Por qué? Porque al sumarle uno a una casilla de cada fila, todas las cadenas generadas diferirán en alguna de sus casillas, en una unidad con respecto a esta cadena. Es decir, nuestra MU podrá generar todas las cadenas correctas verificadas por MD, menos, como mínimo ésta… ¡Hay al menos, una cadena que no es decidible desde MU! ¡Se le ha escapado un preso a nuestro robótico vigilante de la corrección! Hilbert saca un pañuelo y se pone a llorar. La MD podría no reconocer la MT que resolviera la conjetura de Goldbach.

La segunda prueba (que a Turing le gusta más que la primera) se basa en la idea de que pudiéramos construir una máquina híbrida: una MU y una MD en la misma máquina (DU). Esta máquina se encontraría como input con una cadena cualquiera que la parte MD verificaría como correcta o no. Si fuera correcta, la parte MU replicaría el funcionamiento de la MT codificada y devolvería la cadena que la MT concreta devuelve. Bien, parece que no hay problema. Pero, ¿qué pasaría si le pasamos como input el mismo número de identificación de la propia DU? MD la verificaría como correcta y la pasaría a MU para que replicara su función, a saber, de nuevo verificar mediante DU si es circular para pasarla luego a MU, la cual activaría otra vez DU, que pasaría la cadena otra vez a MU… así sucesivamente hasta el infinito… ¡Al introducir su código en si misma DU se vuelve circular! ¿Pero no habíamos dicho que DU no era circular al pasar por la verificación de MD? ¿Qué pasa aquí? Una paradoja no muy diferente a la de Epiménides y los cretenses. Definitivamente, hay procesos algorítmicos indecidibles, como ya había mostrado Alonzo Church unos años antes que Turing. Pero no nos pongamos a llorar tan rápido, hay que tener en cuenta que Turing sólo había demostrado la indecibilidad de las matemáticas, no su incoherencia . Como el matemático André Weil dijo:

Dios existe, ya que las matemáticas son consistentes; el demonio también, ya que no podemos demostrarlo.

Si te ha gustado lee también sus precuelas: II y I.

Todos los lunes tengo que impartir una hora de “Alternativa a la Religión”, una pseudoasignatura en la que no se puede hacer nada, ni dar ningún tipo de temario ni hacer maldita la cosa con fines pedagógicos (contradicciones del sistema educativo. Si fuera la única…). Lo único que se permite de forma unánime es ver películas, así que como hombre obediente que soy, eso hacemos todos los lunes en la clase de 3ª ESO B.

Tengo la mala costumbre de dejar la elección de la película a última hora, así que siempre ando el lunes, veinte minutos antes de que empiece la clase, mirando con  prisas en mi colección de películas cuál sería la adecuada para el alumnado. Empecé mirando la estantería de izquierda a derecha. Blade Runner no que es demasiado densa para los críos, 2001 demasiado lenta, Dogville no la van a entender, Troya ya se la he puesto, Reservoir Dogs ni de coña… ¡Bingo! Million Dollar Baby, de boxeo pero muy humana, perfecta.

Sin embargo, en ese momento me acordé de que Million Dollar Baby ya se la había puesto. Es más, me vino a la memoria todo el proceso de elección de esa película cuando lo hice la vez pasada y comprobé que había sido exactamente igual. Me vi a mi mismo empezando de izquierda a derecha y descartando las otras películas exactamente por las mismas razones que había dado ahora mismo. Los dos  procesos habían sido idénticos, sólo los diferenciaba el haber ocurrido en fechas diferentes y que yo me hubiera acordado de que todo era una repetición.

La reflexión surge de modo evidente: ¿qué hay de libre albedrío en mi elección? Alguien que me conociera perfectamente podría haber predicho los descartes y sus respectivas razones, así como la película seleccionada. ¿He elegido libremente?

Mi idea es que no. Los seres humanos operamos por razones, por motivaciones, por causas que determinan nuestra acción. Yo escogí mi película en base a mi experiencia pasada eligiendo películas. Es más, repliqué exactamente mi experiencia pasada, el archivo que hay en mi memoria para elegir películas para la clase de los lunes con 3ºB. ¿No es esa siempre nuestra forma de actuar? ¿No estamos siempre aprendiendo y repitiendo? Vale pero, ¿dónde queda entonces la novedad de nuestras acciones? Stuart Hameroff lo explica muy bien en este texto (extraído de nuevo del libro de Blackmore):

Para hacer una analogía, imagina que has entrenado a un robot zombi para que cruce un lago en un velero, y en el otro hay tres embarcaderos, A, B o C, y el viento cambia constantemente. En este caso, el viento jugaría el papel de las influencias no computables, y los virajes y golpes de timón del velero serían los procesos algorítmicos deterministas para cuya ejecución se ha programado al robot zombi. Pero cada viraje estaría sometido a esa influencia no computable, de manera que el resultado – el puerto A, B o C en que atraca el velero – sería consecuencia de ambas influencias. Pienso que la experiencia de llevar a cabo este proceso determinista junto con esta influencia no computable es lo que llamamos libre albedrío. Por lo tanto, en ocasiones, hacemos cosas que son más o menos inesperadas incluso para nosotros mismos.

Creo que Hameroff se equivoca en varios puntos, si bien el planteamiento general es correcto. En primer lugar de lo que está hablando no es de libre albedrío sino de alatoriedad. Un proceso aleatorio (los golpes de viento) no tiene nada que ver con actos libres. Es como si dijéramos que cuando tiro un dado, éste elige libremente sacar una de sus seis caras. Y en segundo lugar, esa no computabilidad a la que se refiere tiene que ver con las fluctuaciones cuánticas de los microtúbulos de las neuronas, que según él y Penrose son las responsables de nuestra conciencia, teoría ésta, muy dudosa para la comunidad científica (sinceramente, no la entiendo).

Yo cambiaría la perspectiva afirmando que nuestra toma de decisiones es un sistema caótico en el sentido en que es muy sensible a pequeñas variaciones en las condiciones iniciales. Si mientras  estaba escogiendo mi película mi canario se hubiese puesto a cantar, es posible que esta pequeña interferencia hubiera hecho cambiar mi decisión. Algo insignificante, impredecible, cambia el resultado, por eso la conducta humana es tan difícil de pronosticar, pero de ahí a libertad de elección va un trecho. Así que la metáfora de que somos robots zombi me parece correcta: robots en el sentido determinista de nuestra elección, pero zombis en el sentido de caóticos, torpes, volubles, muchas veces impredecibles (nota: nada que ver con los zombis de Chalmers, de los que ya hablaré otro día).