Archivos de la categoría ‘Ciencias de la computación’

Campañas contra los robots asesinos, muchos desarrolladores e investigadores diciendo que la IA puede ser un gran peligro (hace unos días lo hizo Bengio), la famosa carta del Future of Life Institute en la que personalidades como Stephen Hawking, Elon Musk, Steve Wozniak y todo el resto de la flor y nata del stablishment tecnológico norteamericano en la que alertaban sobre el peligro de los desarrollos bélicos de la IA, e incluso el Secretario General de la ONU, Antonio Guterres, hablando de la prohibición de las LAW (Lethal Autonomous Weapons). Raymond Kurzweil escribiendo sobre la singularidad tecnológica y sobre máquinas conscientes para el 2029, Nick Bostrom alertándonos de la gravedad de los problemas a los que llegaremos cuando ocurra la “explosión de inteligencia”: momento en el que surja una IA cuya inteligencia nos supere y se dedique a hacerse más inteligente a sí misma, lo cual llevará a un proceso de crecimiento exponencial… ¡Las máquinas se harán con el mando del mundo y tendrán que decidir si somos una amenaza para ellas o no!

Mucho revuelo, pero ¿hay que tomarse esto en serio? ¿Hay que comenzar a preocuparse por la rebelión de las máquinas asesinas? Ni hablar. Veamos:

  1. No hay ni la más mínima evidencia empírica que apunte a la posibilidad de crear máquinas conscientes. Ni la más mínima. Invito al lector a que lea propuestas como CLARION, OpenCog, LIDA, etc. y que juzgue por sí mismo si son conscientes o no, o sí, al menos, están cerca de conseguirlo.
  2. En lo referente a una Inteligencia Artificial General, el asunto no está mucho mejor. Hay proyectos e ideas (véase CYC, SOAR o el actual IMPALA) pero, igualmente, están lejísimos de que podamos tener una IA capaz de acercarse a la polivalencia de nuestras mentes de primate. El Frame Problem sigue sin resolverse concluyentemente y nuestras más avanzadas arquitecturas de aprendizaje profundo tienen mucho menos sentido común que un niño de tres años.
  3. Entonces, sin base experimental ni teórica alguna… ¿cómo nos atrevemos que decir que la IA artificial es tan peligrosa y, es más, que se rebelará contra sus creadores? Curiosa forma de argumentar: del conjunto vacío de premisas deducimos todo lo que nos da la gana.
  4. Es por ello que es absolutamente imposible realizar ningún tipo de predicción al respecto. Es una solemne estupidez hablar de fechas. Sería algo así como preguntarle a un hombre de la Edad Media por la aparición del vuelo a reacción. Los que se atreven a hacerlo se lo inventan sin ningún criterio, así de claro. Igual da decir 2029, 2087, 2598 o 15345.
  5. Lo que sí tenemos en IA son excelentes hiperespecialistas: inteligencias capaces de hacer a nivel sobrehumano tareas muy concretas como por ejemplo, jugar al ajedrez o al Go (actuar en entornos muy formalizados), analizar y modificar imágenes, o buscar patrones en ingentes cantidades de datos… pero nada más. Si tienes una red convolucional increíblemente buena detectando un tipo de tumor en radiografías de pulmones y quieres que aprenda otra cosa, solo tienes un camino: borrarlo todo y volver a entrenar a la red desde el principio.
  6. El deep learning ha supuesto un gran empujón a un campo que, siendo honestos, ha tenido casi más inviernos que primaveras. Las distintas versiones de Alpha (Go, Zero, Star…) son impresionantes, y el generador de textos recientemente aparecido GPT-2 es lo mejor que nunca he visto… a falta de que hagan público cómo funciona. Sin embargo, a pesar de que estos logros son alucinantes, hay que entender que la ciencia avanza, en la inmensa mayoría de los casos, a base de pequeños pasos.
  7. Se cae en un error muy común a la hora de entender el progreso científico. Se cree que porque algo esté avanzando con mucha solvencia, ese avance va a seguir ininiterrumpidamente hasta llegar al infinito. Así, si creamos máquinas un poquito inteligentes, en un futuro, seremos capaces de hacerlas superinteligentes… ¿Por qué? En ciencia es muy común encontrar programas de investigación muy prometedores que terminan por volverse degenerativos y abandonarse. Verdaderamente, no sabemos qué pasará con la IA al igual que no sabemos lo que pasará con ninguna otra tecnología ¿Alguien pudo predecir el éxito de Apple, Twitter, Yotube…? Como bien afirma el analista Nassim Taleb, una de las características de nuestra época es nuestra mas que patente incapacidad de predicción: sucesos altamente improbables suceden por doquier.
  8. Pero, dado que nosotros solo somos quarks organizados de una determinada manera y nuestra mente surge de colocar quarks de un determinado modo… ¿no será entonces cuestión de tiempo que descubramos tal colocación y entonces creemos una IA a imagen y semejanza de nosotros y, ya puestos, la haremos mejor que nosotros? Por supuesto, pero esta argumentación es de lo más vacío que puede decirse. No es algo muy alejado de sentenciar: todo lo que sea posible terminará por pasar. Vale, tómate un café ¿Podremos viajar más allá de la Vía Láctea y colonizar el universo? ¿Podremos hacer un zoo de dinosaurios al estilo de Parque Jurásico? ¿Podremos hacer máquinas del tiempo o teletransportarnos? En teoría no vemos que sean imposibles… ¿Centramos entonces todo el debate mediático en torno a estos temas?
  9. Andrew Ng dice que debatir ahora sobre la rebelión de las maquinas es equivalente a debatir sobre el problema de la superpoblación en Marte. Es posible que sea un tema muy interesante y evocador, pero no puede tener la cobertura mediática que se le está dando. Hay problemas mucho más acuciantes que merecen mucho más que les dediquemos nuestro esfuerzo.
  10. En el fondo se está jugando con una falacia informal, la ad ignorantiam: sacar conclusiones a favor o en contra de algo por el hecho de que no se ha demostrado lo contrario. Como, en el fondo, nadie puede estar en desacuerdo con el punto 6… pues el punto 6 es cierto. Dos cosas: en primer lugar que algo sea irrefutable no quiere decir ni que sea cierto ni que merezca la pena nuestra atención. El famoso ejemplo de la tetera de Russell viene aquí a pelo: sería posible que ahora mismo en un anillo de Saturno existiera una tetera orbitando alrededor del planeta. Si alguien asegura que es absurdo que allí halla una tetera, no tenemos más que decirle que intente demostrar que no es así. Como no podrá, ya está, nuestra afirmación es verdadera. Como nadie ha demostrado que no sea posible crear una IA de inteligencia sobrehumana, la inteligencia sobrehumana llegará y, es más, se rebelará contra nosotros.
  11. La carga de la prueba la tiene siempre el que afirma: así los defensores de la rebelión de la IA deberían aportar la suficiente evidencia empírica tanto acerca de la fabricación de máquinas sobrehumanas como de la supuestamente necesaria rebelión de éstas. Como hemos afirmado en 1 y en 2, no existe tal evidencia de lo primero, cuánto menos de lo segundo: ¿a alguien se le ha rebelado alguna vez una máquina y ha querido, a propósito, atentar contra su integridad física? Creo que James Cameron (Terminator) y las hermanas Wachowski (Matrix) han hecho mucho daño.
  12. Pero es que es más: existe evidencia en contra. Hay multitud de argumentos que diferencian la mente humana de un computador y que subrayan la imposible reducción de la primera al segundo. Las críticas a la IA Fuerte han llegado desde todos lados. Por citar los más notorios, tenemos el argumento de la irreductibilidad de los qualia de Nagel, la crítica desde la perspectiva heideggeriana de Dreyfus, la indecibilidad gödeliana de la mente de Roger Penrose o, para mí la más notoria, la caja china de John Searle. Creo que, a pesar de las múltiples matizaciones, no se ha conseguido refutar convincentemente a estos autores (sobre todo a Nagel y a Searle).
  13. Estos argumentos críticos tampoco llegan a imposibilitar la creación de máquinas superinteligentes o conscientes, solo sostienen que las que hay no lo son y que, por el mismo camino, no lo vamos a conseguir. Yo no tengo ni idea de cómo podrán conseguirse (tendría algún que otro premio Nobel si lo supiera), pero desde luego, estoy seguro de que una consciencia no puede correr en un procesador Pentium (ni en una TPU de Nvidia) ni guardarse en una memoria USB.
  14. La rebelión de las máquinas es un tema que puede ser evocador e interesante, incluso un magnífico campo para la reflexión filosófica y el experimento mental. No digo que no se pueda tratar. Yo lo he hecho alguna vez en el blog. Lo que sostengo es que es un tema sobredimensionado que, muchas veces, aparece en el foco de atención mediática como si fuese un problema social de primer orden que urge solucionar, cuando lo único que hay es marketing: se ha encontrado un nuevo nicho por explotar, y hay muchos libros que vender y muchas cátedras universitarias que ocupar.

Estimados lectores, ya tenéis en Amazon la tercera recopilación de las mejores entradas de este blog. Así podréis leer lo más florido de la Máquina de Von Neumann cómodamente, en formato físico. Reconozco que aunque tengo mi e-reader y las ventajas de un cacharro así son alucinantes (eso de tener una biblioteca completa metida dentro está muy bien), me sigue gustando más leer en papel, y me sigue encantando el concepto de biblioteca clásica. Me gusta ver un libro, tocarlo, olerlo… Quizá me estoy volviendo obsoleto en una época en la que todo es evanescente, en la que todo está en la nube. A lo mejor es mi querencia cartesiana de, precisamente, que exista algo fijo y estable en un mundo que fluye a una velocidad inalcanzable. O quizá es porque es muy cierto el dicho “En casa del herrero cuchara de palo”, entendiendo que un filósofo que se dedica a pensar sobre lo digital, en su casa sigue anclado a lo material. O quizá es que me he dejado contagiar de la estúpida moda vintage: videojuegos retro, vinilos y libros… El caso es que me apetece que todo lo que aquí escribo exista materialmente (No obstante, también lo podéis conseguir en e-book). Espero que lo disfrutéis. Muchas gracias por todo.

 

Un titular: “Redes neuronales logran traducir pensamientos directamente en palabras”.  La noticia es de Europa Press y tiene incluido el artículo de Scientific Reports, por lo que se le presupone cierto crédito. Parece alucinante ¡Hemos sido capaces de descodificar el pensamiento humano! Jerry Fodor nos contaba que debajo del lenguaje cotidiano que utilizamos para pensar (nuestro idioma), existía una estructura más profunda (ya que existe pensamiento sin lenguaje). Hay, por así decirlo, un lenguaje en el que está programado el cerebro (Fodor lo llamó mentalés) y la tarea de todo científico cognitivo que se precie será descubrirlo. Entonces, ¿lo hemos hecho ya?

De ninguna manera. Aunque en esta noticia no veo una mala intención amarillista, una lectura descuidada puede llevar a cierto engaño.

Examinemos lo que verdaderamente nos dice la investigación. Cuando realizamos cualquier actividad cerebral ocurren procesos bio-físico-químicos variados que pueden ser registrados por diferentes técnicas de monitorización. Algunas como, por ejemplo, la resonancia magnética funcional, observan el aumento de flujo sanguíneo en una determinada región cerebral. Entonces, presuponemos que si cuando yo estoy escuchando música, esa determinada área aumenta su flujo, será porque esa zona tiene que ver con mi capacidad para escuchar música. Otros sistemas de monitorización, como el electroencefalograma, detectan las distintas ondas cerebrales que surgen de la actividad eléctrica: ondas delta, theta, alfa, beta y gamma. En el caso del estudio en cuestión se basaron en datos obtenidos por la medición de frecuencias, en concreto de bajas y altas de tipo gamma. Y lo que han hecho Nima Mesgarani y su equipo, es utilizar un cierto tipo de red natural artificial para que encuentre relaciones entre las frecuencias obtenidas y las palabras que un sujeto estaba escuchando en un determinado momento, de modo que mediante un sintetizador de voz o vocoder, la red traducía los patrones cerebrales a palabras sonoras.

El caso es que la traducción de patrones de ondas a voz puede darnos la impresión de que estamos traduciendo pensamientos (mentalés), de modo que desciframos el código secreto de nuestra mente. No, lo único que estamos haciendo es transformar huellassombras, residuos que nuestro cerebro deja cuando piensa, en palabras. Y es que hay una clara confusión. Lo que los métodos de monitorización actuales captan no son los pensamientos mismos sino, por usar una metáfora fácil, el ruido que hacen. Y ese “ruido” podría, incluso, no ser información importante para comprender lo que es el pensamiento. El patrón de ondas detectado cuando se piensa en tal o cual palabra, podría no tener ningún papel causal en todo el procedimiento cerebral mediante en el que se piensa dicha palabra, podría ser un simple epifenómeno. De hecho, el gran problema para los métodos de monitorización cerebral es que es tremendamente complejo observar en directo el funcionamiento del cerebro de alguien sin dañarlo. Por eso se buscan lo que se llaman técnicas no invasivas, pero el problema, aún sin solucionar, es que estas técnicas son todavía muy imprecisas y no nos permiten el nivel de detalle que necesitamos. A día de hoy solo escuchamos ecos, sombras de la mente, y sobre ellos solo cabe la especulación.

Lo explicaremos con una metáfora. Supongamos que tenemos un coche. No sabemos nada de cómo funciona el motor pero podemos escuchar el ruido que hace. Entonces, a partir de ese ruido entrenamos a un algoritmo matemático para que nos diga en qué marcha va el coche en un determinado momento. El algoritmo es muy preciso y no falla nunca a la hora de decir en qué marcha está.  Ipso facto, la prensa saca el titular: “Hemos descubierto el código secreto del motor de explosión y una inteligencia artificial nos permite traducir su funcionamiento”. Si lo pensamos, realmente este descubrimiento sólo nos informaría de una pequeñísima parte  del funcionamiento real de un motor (en este caso que el motor tiene marchas), pero nada de lo verdaderamente significativo: el funcionamiento del cilindro, la explosión de combustible, etc.

Para que, realmente, hubiésemos descubierto el auténtico código del cerebro, deberíamos tener una equivalencia razonable entre un proceso mental y lo que monitorizamos y, con total evidencia, aún no lo tenemos, principalmente, porque no sabemos bien qué ocurre dentro de nuestros cráneos cuando pensamos. Noticias de este tipo pueden dar la impresión de que nuestro conocimiento del cerebro es muchísimo más alto de lo que, realmente, es. Y hay que dejarlo muy, muy claro: estamos todavía, únicamente, tocando la superficie de su funcionamiento y no sabemos, prácticamente, nada.

Eso sí, esto no quita nada a la importancia del descubrimiento de Mesgarani y de su gran utilidad clínica. Será maravilloso que un paciente con síndrome de enclaustramiento pudiera comunicarse con los demás, además de que abrimos las puertas a formas de comunicación “telepáticas”, y a un enorme abanico de posibilidades en el campo de la interfaz hombre-máquina.

Uno de los mitos de la modernidad fue la búsqueda de un punto cero, un pilar sólido, irrefutable, libre de sesgos y prejuicios, de presupuestos y de ideas infundadas. Eso fue lo que intentaron Descartes y Bacon: encontrar esa nuda veritas, certeza absoluta a partir de la cual, si utilizabas el método adecuado, el recto pensar, podrías construir la totalidad del edificio del saber. Los positivistas actuales caen de nuevo en ese mito cuando hablan de los hechos, como si éstos representaran la realidad pura (si bien lo que a mí me molesta más es caer en el otro extremo: que, a partir de aquí, se concluya con estupideces como que la verdad no existe, o que la propia ciencia es literatura). Es imposible enfrentarse a la realidad metafísicamente desnuda, pero eso no quita que existan caminos mejores que otros para acercarse a ella.

Este debate, punto central de la historia de la filosofía, me ha venido a la cabeza cuando de nuevo oigo hablar del impresionante Alpha Zero (ahora que los de Deepmind han publicado un nuevo artículo en Science), la IA de Google que, partiendo del único conocimiento básico de las reglas del ajedrez, no teniendo ni un solo dato sobre táctica, estrategia, ni alguna base de datos de partidas clásicas, machacó a uno de los mejores programas de ajedrez de la actualidad: Stockfish 8 ¿Cómo ha sido posible algo así?  Alpha Zero comienza como un niño pequeño que acaba de aprender a jugar y no sabe nada más del juego (parte de una tabula rasa). Entonces, empieza a jugar contra sí mismo, con movimientos en principio aleatorios, pero siguiendo un clásico aprendizaje reforzado: las jugadas que llevan a la victoria en una partida serán más probables en las siguientes, y las que llevan a la derrota menos.

El programa decide la jugada mediante un árbol de búsqueda de Monte Carlo (no usa la poda alfa-beta de Stockfish). Ante la insuperable explosión combinatoria que supone predecir todos los movimientos posibles desde una posición hasta el final de la partida, Alpha Zero simula y elige, aleatoriamente, solo algunas y, de entre ellas, escoge la más prometedora. Nótese que eso no le hace tomar una decisión óptima, pudiendo, perfectamente, perder muchísimas jugadas mejores e, incluso, si tuviese la mala suerte de escoger un grupo de jugadas mediocres, hacer una mala jugada. Sin embargo, para que eso no ocurra (o, al menos, no ocurra demasiadas veces), es aquí donde la red neuronal artificial profunda orienta al árbol de decisión sobre qué caminos son los mejores y cuáles son rápidamente desechables en virtud del conocimiento previo atesorado tras todas las partidas anteriores (Alpha Zero, al contrario que versiones previas que funcionaban con aprendizaje supervisado, utilizaba solo una red y no dos).

Tras solo 4 horas de auto-entrenamiento, Alpha Zero derrotó a Stockfish 8, programa con un Elo ponderado de 3.400 (El mejor jugador humano, Magnus Carlsen, tiene un Elo de 2.835 a diciembre de 2018), lo cual no deja de ser absolutamente impresionante, simplemente, como logro dentro de la creación de programas de ajedrez. En el reciente artículo se publican nuevas partidas entre ambos y los resultados no dejan lugar a dudas sobre el poder de Alpha Zero: ganaba a Stockfish incluso cuando solo contaba con una décima parte del tiempo del otro. Incluso ganó también a la nueva versión de Stockfish, la 9.

Pero lo realmente espeluznante es que Alpha Zero comenzó, valga la redundancia, de cero, solo sabiendo las reglas y nada más… Es muy instructivo el gráfico de aperturas que nos ofrecieron en el primer artículo publicado (Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm, de diciembre del 2017), en el que se ve cómo el programa va utilizando unas y rechazando otras según avanza en el juego.

Vemos como la apertura española o la defensa siciliana, tan populares entre los profesionales del ajedrez, son desechadas rápidamente, mostrando una clara predilección por la apertura inglesa y por las de peón de dama. Alpha Zero va aprendiendo en soledad las jugadas que la humanidad ha entendido tras siglos (o quizá milenios) de estudiar el ajedrez, y las desecha para jugar a su manera. Demis Hassabis dijo que Alpha Zero no juega ni como un humano ni como una máquina, sino casi como un alienígena. Y es cierto, esa forma de jugar no ha sido vista hasta la fecha y los analistas están perplejos comprobando alguna de las extrañas y, aparentemente ininteligibles, jugadas de esta singular IA. Lo cual, además, saca a la palestra el tema de las diferentes formas de inteligencia o estilos cognitivos posibles. Hasta ahora, cuando hablábamos de diferentes estructuras cognitivas, teníamos que irnos a los animales, a los que, tradicionalmente, se considera con muchos menos recursos cognitivos que nosotros. Ahora tenemos una máquina endiabladamente superior, que hace las cosas de una forma muy diferente a todo organismo conocido.

Pero es más, la interpretación más evocadora de su increíble aprendizaje es que el conocimiento humano le estorba.  Stockfish es muy bueno, pero es demasiado humano: su forma de jugar está muy lastrada por su conocimiento de partidas entre humanos. Pero, ¿y qué tiene de malo el conocimiento humano? Que su comprensión del juego está limitada por las capacidades humanas, por nuestra débil memoria y por nuestra escasa capacidad de razonamiento para componer jugadas. Alpha Zero tiene una perspectiva mucho más amplia sobre el ajedrez (se está viendo ya que parece que no valora las piezas del modo tradicional, haciendo continuos sacrificios en pos de ventajas posicionales a largo plazo).

Bien, pues preguntémosle a Alpha Zero cómo juega y mejoremos nuestro juego. No podemos, la red neuronal de Alpha Zero es una caja negra total: su conocimiento se encuentra distribuido entre los valores numéricos de los pesos de sus nodos neuronales… Abriendo su interior no podemos entender nada, pues el deep learning tiene este grave defecto: no podemos pasar su conocimiento a fórmulas lineales tal que podamos entenderlo y traducirlo en estrategias de juego. O sea, hemos creado el ente que mejor juega al ajedrez de todos los tiempos y no sabemos cómo lo hace. Solo nos queda verlo jugar y, externamente, intentar comprender por qué hace lo que hace como si observáramos a un jugador que no quisiera desvelar los secretos de su juego.

Algunos han destacado el dato de que Alpha Zero analiza solamente unas 60.000 posiciones por segundo en comparación con los 60 millones de Stockfish, anunciando, a mi juicio muy apresuradamente, el fin de la fuerza bruta. En primer lugar a mí 60.000 jugadas por segundo me sigue pareciendo fuerza bruta. No sé al lector, pero a mí en un segundo casi no me da ni para darme cuenta de que estoy jugando al ajedrez. Y en segundo, el funcionamiento de Alpha Zero es engañoso en cuanto a la potencia de cómputo que necesita. Si bien, una vez entrenado, necesita bastante menos que cualquier módulo competente de ajedrez, para su entrenamiento previo necesita muchísima. De hecho, necesita jugar muchas más partidas que cualquier gran maestro humano para llegar a su nivel.

Y es que, a nivel teórico, Alpha Zero no es demasiado novedoso. De modo muy general, no es más que un árbol de decisión que Monte Carlo (inventado desde mediados del siglo pasado) más una red neuronal convolucional que no parece tener nada fuera de lo que ya sabemos desde hace tiempo. Entonces, ¿por qué no se ha hecho antes? Precisamente porque hacía falta una potencia de cómputo de la que no se disponía. Las redes neuronales artificiales siguen teniendo el mismo defecto de siempre: su lentitud de entrenamiento, hacen falta millones de ejemplos para que vayan aprendiendo. Entonces, la fuerza bruta que no necesitan para funcionar, sí que la necesitan para entrenarse. No obstante, el avance es, a nivel práctico, muy significativo: una vez entrenado ya no necesita más de dicha potencia.

Otro aspecto, seguramente el más importante, es la polivalencia que prometen y que nos hace soñar con la añorada IAG (Inteligencia Artificial General). Alpha Zero no solo es invencible al ajedrez, sino al Go y al Shogi ¿En cuántas tareas podrán desenvolverse a nivel sobrehumano esta nueva generación de máquinas? Prudencia: las máquinas ya nos machacaban desde hace tiempo en muchas ocupaciones, siempre y cuando éstas fueran fácilmente formalizables. El ajedrez, el Go o el shogi, aunque sean juegos muy complejos, son trivialmente formalizables: tablero de juego delimitado con precisión y solo unas pocas reglas de juego, igualmente, muy precisas. En entornos más complejos y confusos  tienen problemas. A pesar de que, precisamente, la IA conexionista se mueve mejor que la simbólica en ellos, todavía tiene muchas dificultades. Pensemos que un coche autónomo, aunque sepa desenvolverse en ambientes muy cambiantes, lo único que hace es moverse por vías, habitualmente, bien delimitadas (su “micromundo” es casi  de dos dimensiones). Moverse competentemente en un determinado nicho ecológico es de lo primero que saben hacer los organismos vivos más sencillos. Aunque estamos hablando de excelentes avances, todavía queda mucho por hacer.

Desde el Círculo de Ajedrez José Raúl Capablanca, se nos presenta un problema que los módulos tradicionales no son capaces de solucionar, precisamente, porque no son capaces de planes generales a muy largo plazo ¿Sería capaz Alpha Zero de solucionarlo? Juegan blancas y ganan.

La solución en este vídeo.

 

Estoy con la versión inglesa de Real Humans y no estoy viendo nada que no haya visto antes y mucho mejor. Y que los synths (robots humanoides) parezcan maniquíes con movimientos acartonados… ¡Uffff! Bueno, le daremos unos dos, a lo sumo tres, capítulos más de oportunidad a ver si aparece algo decente.

El caso es que en Humans, y en prácticamente todas las series o películas que han tratado el tema de la IA futura repiten un tópico que es completamente falso. En todas se nos describe un mundo en el que las máquinas se han incorporado con suma normalidad a nuestra vida cotidiana. Y, en todas, se destaca el hecho de que son nuestros sirvientes y esclavos, y siempre se nos ofrece la clásica escena de un humano siendo cruel con un indefenso y sumiso robot.  Se busca que el espectador empatice con las máquinas y que, cuando éstas se rebelen, se vea bien que hay una causa justificada y que no está claro cuál es el bando de los buenos y cuál de los malos. No obstante, para no confundir a un espectador ávido de seguridades narrativas, aparte de situar con claridad meridiana a un villano evidente (los dueños de gigantescas multinacionales suelen hacer muy bien este papel), también entran en escena humanos buenos que son capaces de comprender el sufrimiento de los oprimidos electrónicos. El caso es que llega un momento en el que aparece una máquina diferente, una máquina que es capaz de sentir, de tener consciencia, de ser creativa o, vete a saber tú que indefinido factor x que adquiere, que lo hace despertar de su letargo maquinal.

Entonces, vemos variadas escenas que anuncian ese despertar. Por ejemplo, en Humans aparecen un montón de androides colocados en filas regulares (para crear la sensación de mercancía almacenada) y, aparentemente, todos ellos están apagados o desconectados. De repente, uno abre los ojos y mira la luna por una rendija abierta del techo. Ya está, está despertando, mira la luna como preguntándose por el misterio de su existencia. Ya no es una máquina, ahora ya es un humano o, incluso, algo mejor. En los siguientes episodios o escenas de la serie/película iremos contemplando el progresivo despertar de otros robots hasta llegar al clímax final: el gran enfrentamiento entre la humanidad y las máquinas ¿Será verdaderamente así cuando la auténtica consciencia artificial llegue a nuestro mundo? Rotundamente NO.

La razón es bastante clara. El día en que seamos capaces de crear consciencia sintética, momento, por cierto, bastante lejano dado el actual estado del arte, y consigamos que una máquina u organismo artificial del tipo que sea, pueda darse cuenta del mundo que le rodea, será porque hemos descubierto los mecanismos físico-químico-biológicos que hacen que la consciencia se genere en nuestros sistemas nerviosos. Ese día, después de décadas, o incluso siglos, de investigación del funcionamiento cerebral, seremos capaces de replicar ese mecanismo en una máquina o en cualquier sustrato físico necesario para conseguir algo así. Entonces, cuando esto suceda no será un hecho sorprendente en la “mente positrónica” (por hacer un guiño a Asimov, quizá el principal culpable del error) de un robot que funciona mal. Cuando repliquemos consciencia, los científicos o ingenieros que lo consigan, tendrán muy claro que lo están consiguiendo. Afirmar lo contrario sería como decir, a mediados del siglo XIX, que la bombilla eléctrica incandescente iba a surgir, en un determinado momento azaroso, de alguna vela encendida en cualquier hogar de Newcastle. No, Wilson Swan tardó unos veinticinco años experimentando con diferentes tipos de materiales, técnicas, métodos y teorías hasta que pudo fabricar una bombilla funcional y eficiente.

Creer que la consciencia despertará sin más dentro de avanzadas inteligencias artificiales como fruto accidental de su complejidad es no comprender bien el funcionamiento de la ciencia y la tecnología, que viene de no entender la propia IA. Un programa de ordenador solo realiza cálculos, y los cálculos, por muy complejos, sofisticados y sobrehumanos que sean, solo dan resultados numéricos. Y creo que todos estamos de acuerdo en que los números no son objetos ni procesos físicos reales, por muy bien que los describan. Es por eso que el ejemplo de John Searle es muy ilustrativo: aunque tuviésemos un programa que simulara con una precisión casi absoluta el funcionamiento de una vaca, dicho programa seguiría sin poder darnos leche que pudiésemos beber. Así, para tener consciencia real no solo se necesita un ordenador que replique matemáticamente su funcionamiento, sino un organismo que tenga las propiedades físico-químico-biológicas que se necesiten para generar consciencia ¿Cuáles son? Lo ignoro, ya que si lo supiera estaría en Estocolmo recogiendo un Premio Nobel muy merecido.

Explicado de otra forma: ya hemos conseguido hacer robots que se muevan muy eficazmente en entornos muy irregulares (véanse todas las maravillas de Boston Dynamics). Cuando los vemos caminar y correr sorteando obstáculos nadie dice: “Mira, el programa de ordenador se mueve”. Nadie atribuye movimiento al sofware que dirige el robot, sino al robot en su totalidad, es decir, a los motores, baterías, engranajes, extremidades, etc. que hacen posible el movimiento. Igualmente, para decir que una máquina piensa o es consciente, no podemos decir “Mira, el programa de ordenador es consciente”, porque al hacerlo estamos omitiendo todo lo demás que hace falta para que ocurra una consciencia real. En cierto sentido estaríamos diciendo que una mente puede existir sin cuerpo cuando, evidentemente, no es así. Lo que realmente nos hace falta es saber mucho, mucho más, sobre los cuerpos que albergan consciencias.

Así que no, la consciencia no va a despertar en un androide doméstico que, un día, se pone a oler la fragancia de una flor.

Ahora mismo, como puro divertimento, estoy diseñando un programita en Python para jugar a las tres en raya (o tic-tac-toe).  De momento, solo he hecho que el juego funcione mediante un simple motor aleatorio, es decir, que la máquina mueve al azar, sin estrategia alguna. Mi única pretensión, hasta ahora, ha sido conseguir que el juego se ejecute sin errores, con un código lo más elegante posible. En breve, programaré un sencillo sistema de estrategias para que mi programa de tres en raya sea ya una auténtica inteligencia artificial.

Mientras dura la partida, el programa manda ciertos mensajes de texto a la consola. Por ejemplo, cuando el motor aleatorio le indica poner ficha en una casilla del tablero que ya está ocupada, dice “Casilla ocupada. Vuelvo a intentarlo”. Simplemente con eso, de modo casi inconsciente, tendemos a darle cierta entidad mental al programa. Esa sencilla frase crea en ti la sensación de que “hay alguien ahí”, de que ese programa tiene alguna especie de anima, de principio vital oculto. A fin de cuentas, está hablando conmigo utilizando mi idioma. Cuando le implemente las estrategias de juego que, inicialmente, no serán más que el típico movimiento defensivo de poner ficha en el tercer hueco cuando el rival ha puesto dos fichas seguidas, evitando así perder en el siguiente movimiento o, a la inversa, la jugada ganadora de continuar cualquier cadena de dos fichas contiguas con una tercera, convertiremos al programita en un agente racional, en un ser que opera siguiendo propósitos y que realiza acciones inteligentes para conseguirlos (aunque “él” no tiene ni remota idea de que lo hace así).  Entonces, el proceso de personificación de la máquina habrá dado un paso más y ya, casi casi, creeremos que un pequeño homúnculo habita, en algún sentido, las entrañas de nuestra computadora ¿Por qué ocurre algo así? ¿Por qué tendemos a personificar algo que, a todas luces, no tiene ningún tipo de estado mental?

Parece muy evidente que la selección natural nos equipó con una buena Teoría de la Mente. Somos bastante competentes prediciendo las conductas en los otros, basándonos en la presunción de que actúan siguiendo creencias, deseos, sentimientos, etc. En nuestros complejos entornos sociales se antoja como una cualidad muy necesaria para aumentar nuestro fitness. Si la evolución ocultó a los otros nuestros mecanismos mentales, y nos hizo caer en el terrible problema filosófico de las otras mentes, igualmente, tuvo que generar buenos detectores de mecanismos mentales en la siempre competitiva lucha por la supervivencia. Así, al igual que existen excelentes mentirosos, tenemos a otros individuos idénticamente excelentes detectando la mentira, con la simple contemplación atenta del rostro del embustero. Pero quizá fue aquí donde nuestro sistema de detección de mentes se extralimitó y, en ocasiones, nos hace creer que seres completamente inanimados tienen una mente. De la misma manera que nuestro sofisticado sistema inmunitario se excede y ve amenazas dónde no las hay, creándonos molestas alergias, nuestro sistema de detección de mentes puede ver mentes donde no las hay.  Y es que ¿quién no toma cariño a ciertos objetos y los trata como si poseyeran, realmente, una consciencia capaz de sufrir? ¿Quién no ha sentido lástima cuando se ha desecho de su viejo coche? ¿Quién no ha tomado cariño a una prenda de ropa de forma que, cuando ya estaba inservible, le ha costado mucho tirarla a la basura? ¿No seguimos sintiendo ternura por aquel peluche que nos acompañó en la infancia, aún cuando ya vamos peinando canas?

Los niños son completamente animistas, y atribuir estados mentales a cualquier objeto inerte es una cualidad que, según Piaget, caracteriza el pensamiento preconceptual de los infantes hasta, aproximadamente, los cuatro años. A partir de aquí, el mundo de objetos animados va disminuyendo hasta que saben discernir con buen criterio los seres realmente animados de los inertes. Sin embargo, nuestro detector de mentes puede ser engañado fácilmente, sencillamente, mostrándole un objeto que se comporte exteriormente como sí estuviera animado. Así, mi estúpido programa de tic-tac-toe, con solo enseñarme unas frases en pantalla y jugar con una mínima competencia, consigue engañar a mi altamente evolucionada teoría de la mente. Y es que nuestra psique no evolucionó pensando en que iba a encontrarse con máquinas que replicarían con solvencia conductas tan humanas como el lenguaje.

Por eso mucho cuidado al atribuir mente a nuestros ordenadores. No amigos, no la tienen, y ni siquiera hay razones sólidas para pensar que vayan a tenerla a corto ni a medio plazo.

P.D:. un juego tan tonto como el tic-tac-toe nos da una idea del gran problema de las explosiones combinatorias de los árboles de decisión en IA. El tablero tiene nueve casillas. Cuando comenzamos tenemos nueve opciones posibles para colocar nuestra ficha y nuestro rival ya solo tendrá ocho para el siguiente movimiento, pues no puede poner donde hemos puesto la nuestra. Después nosotros solo tendremos siete, el rival seis, etc. Da la impresión de que los posibles movimientos en un tablero tan pequeño que va reduciendo su tamaño a cada turno no serán demasiados. Pues el cálculo es sencillo: hay 9 factorial de movimientos posibles, es decir, 362.880… ¡Ufffff! (Bueno, realmente hay algunos menos, pues tenemos que quitar todas las partidas en las que se gana o pierde antes de agotar todo el tablero, ya que se puede vencer en un mínimo de tres movimientos propios y dos del rival).

Ya está disponible en Amazon en formato e-book por el irrisorio precio de tres euritos (La versión en papel está tramitándose y costará cinco euros). En Coordendas he recopilado las mejores entradas de este blog, junto con más artículos publicados en otros lugares de la red, desde el 2012 al 2016.  Lo he dividido en cuatro secciones: una primera trata sobre la revolución darwiniana (ya sabéis que creo que todavía no hemos tocado ni la superficie de lo que significa la evolución biológica y el gigantesco cambio que supone con respecto a la visión de nosotros mismos), una segunda sobre los avances que se están dando en neurociencias, otra tercera sobre cuestiones cruciales de filosofía de la ciencia, y una cuarta dividida en dos: un extenso artículo que aborda el tema del determinismo y la aleatoriedad (lo publiqué en Hypérbole y se tituló: “Jugando con Dios al Craps”), y otro que habla del gran tema de nuestro tiempo: la Inteligencia Artificial (se trata de una pequeña pero fecunda historia de la disciplina).

En fin, animaos y compradlo pues… ¿qué se puede hacer mejor en la playa que leer la Máquina de Von Neumann?

 

Os dejo el vídeo de la mesa de debate que hicimos en el edificio de Elzaburu en Madrid. Cuando lo he vuelto a ver me ha parecido más interesante aún que cuando estuve allí. Y es que el plantel de expertos es bastante bueno… y si estoy ya es insuperable 😉

La idea que defendí es una de las tesis centrales de Harari en Homo Deus: el fin del liberalismo a manos de las nuevas tecnologías. El fin de nuestro sistema económico-político no va a venir de la mano de los críticos del sistema. El marxismo, con todas sus matizaciones, con todas sus variantes y reformulaciones no ha podido hacer, ni hará, ni cosquillas, al neoliberalismo. El fin de nuestro sistema vendrá por otro lado: de la mano de la revolución tecnológica ¿Cómo?

El liberalismo moderno está basado en la idea de la sacralización del individuo. Y la cualidad más esencial, y por lo tanto valiosa, de ese individuo es su capacidad de elección libre. Entonces, dicho individuo tiene que vivir en un sistema democrático (ya que ha tener la libertad de autogobernarse a sí mismo, tachando de dictatorial cualquier forma de gobierno que sacrifique al individuo en pro de alguna causa mayor como, por ejemplo, el nacionalismo en sus diferentes estilos. Curioso que hoy en día las posturas nacionalistas tengan cierta fuerza) y en un sistema capitalista (tiene que tener libertad para producir pero, sobre todo, para consumir). Por lo tanto, el sistema se fundamenta en la libertad de votantes y consumidores, y si esa desaparece el sistema se derrumba ¿Está desapareciendo?

Nosotros aceptamos que los políticos nos mientan. No nos gusta, de hecho, nos asquea profundamente y gran parte de la apatía política que hoy existe viene de ese desencanto hacia esos mentirosos profesionales que, constantemente, dicen y se desdicen en un bucle patético. Sin embargo, lo aceptamos porque pensamos que el sistema democrático nos trae una serie de ventajas que compensan, con creces, este defecto. Para mí, la principal virtud es que la democracia facilita un mecanismo no violento de alcanzar el poder. En cualquier época histórica no democrática (es decir, en casi toda la historia de la humanidad) si querías gobernar debías quitar por la fuerza al gobernador vigente, y así la historia de nuestra especie es una historia de guerras y guerras y más guerras. La democracia minimiza esto y ya por eso merece, con mucho, la pena.

Sin embargo, nuevas tecnologías están dañando la idea de libertad del sujeto. Bueno, la libertad del sujeto está ya bastante dañada, sencillamente, porque el sujeto no es, para nada, libre, como ya hemos argumentado en muchas ocasiones. No obstante, por mor de la argumentación, vamos a aceptar que el sujeto elige libremente pero que puede ser manipulado, y que un alto nivel de manipulación invalida la libre elección. Entonces, aceptamos un “poquito” de manipulación (la que hacen los políticos), pero demasiada ya no sería aceptable ya que eso significaría que el individuo ha sido engañado y que su voto, en cierto sentido, no ha sido libre ¿Y cómo daña las nuevas tecnologías esto? Aquí entra Cambridge Analytica.

Christopher Wiley,  que parece sacado de un comic cyberpunk (la realidad siempre supera a la ficción), nos ha contado estos días como se elevaba el arte de la manipulación a niveles jamás vistos. Usando el enorme agujero en la seguridad de protección de datos de Fabebook, el análisis de la personalidad a partir de los likes de Facebook iniciado por Kosinski y Stillwell en Cambridge, y técnicas de microtargeting publicitario, la empresa Cambridge Analytica manipuló a más de ochenta millones de personas para votar a favor de Donald Trump o del Brexit (todo mejor explicado en mi ponencia que empieza a partir del minuto 23).  Según sostiene el mismo Wiley, sin la actuación de Cambridge Analytica la victoria de Trump y del Brexit no hubiesen sido tales… entonces, ¿no estamos hablando de fraude electoral en toda regla? ¿Qué legitimidad tienen esos resultados electorales? Pero, fijaos en el asunto porque es muy diferente a otros tipos de tongo electoral: aquí no se ha hecho trampas en el sentido clásico del término: no se obligo a nadie a votar nada en contra de su voluntad ni se falsificaron papeletas ni nada por el estilo. La gente votó felizmente, pensando en que lo hacían libremente. Entonces estamos hablando de un fraude electoral en unas elecciones en las que los votantes votaron libremente… ¿qué diablos significa eso? Que la libertad, fundamento básico del liberalismo, se cae y con ella se cae todo.

No obstante, creo que Wiley exagera un poco. No creo que las herramientas de las que dispuso Cambridge Analytica sean tan potentes a la hora de influenciar en el electorado y que, por tanto, hayan sido tan determinantes en las elecciones donde se utilizaron. Pero eso no quita que en un futuro, bastante próximo, este tipo de técnicas se vayan perfeccionando hasta llegar a niveles de manipulación del votante que nadie estaría dispuesto a aceptar. Véase en el vídeo cuando expongo la “hipótesis de la corbata amarilla” (a partir del minuto 33).

¿Soluciones? Lamentablemente, las medidas legales siempre van muy detrás de los rapidísimos avances tecnológicos (más con la habitual ineptitud de la clase política). El nuevo reglamento europeo (el latoso RGPD) ha mejorado el control de los usuarios sobre sus datos pero todavía se queda muy corto en muchos aspectos y, muy pronto, veremos ya las argucias de las empresas para saltárselo. Como bien subrayaba Elena Gil es muy importante formar en una ética del diseño (que no aparece ni lo más mínimo en ningún plan de estudios de ingeniería), y como bien subrayaba Marlon Molina, una petición de responsabilidades bien delimitada por capas parece una idea muy sensata para afrontar la dificultad que supone la dispersión de la responsabilidad en grandes proyectos empresariales. De la misma forma, que la actividad del programador informático estuviese colegiada tampoco sería una mala propuesta. En el fondo estamos como siempre: un liberalismo económico voraz y descontrolado que pide a gritos una regulación.

Me lleva llamando mucho tiempo la atención la falta de ética generalizada en el sector ingenieril. Recuerdo una vez, discutiendo con un neoliberal, que cuando le hablaba de que la economía debería estar supervisada por la ética me respondió que si yo pretendía convertir la economía en una sharia. O sea, que si hablamos de ética ya somos una especie de… ¡fundamentalistas religiosos!  Y es que los ingenieros están imbuidos en el ethos del mundo empresarial, el cual, como todos sabemos, es de todo menos ético. Así que ingenieros del mundo, por favor, a ver si somos un poquitín más buena gente, y vamos diseñando cosas no tanto para forrarnos como para hacer del mundo un lugar algo mejor. Simon Roses… ¡No trabajes más para DARPA!

Algo de activismo majo al respecto: Tristan Harris, antiguo responsable de diseño ético de Google que se fue de allí espantado viendo lo que realmente había, y otros desertores del sistema, han fundado el Center of Human Technology. Algo es algo.

Hay algo muy siniestro en estas imágenes. Y no es que me quiera poner tecnófobo pero a mí, el hecho de que estas caras no representen a nadie, que sean un retrato hiperrealista de… absolutamente nadie, me da un poco de repelús. El efecto del valle inquietante se me antoja muy fuerte en ellas. Resulta muy difícil hacerle creer a mi cerebro que esas personas no existen, y todo esto me hace plantearme si, en un futuro, nos será cómodo relacionarnos con inteligencias artificiales visualmente indistinguibles de un humano real. No sé, poniéndome muy sci-fi, pienso en estos rostros como los de los nuevos seres que vienen a sustituirnos… ¡Qué miedo!

Bobadas de nerd. Terminaremos por adaptarnos a ellas sin el más mínimo problema, igual que mi hija se ha adaptado muy bien (quizá demasiado) a que el móvil hable o a que seres animados obedezcan a sus dedos en una pantalla táctil. Somos una especie sumamente adaptable a nuevas realidades y relacionarnos con máquinas indistinguibles de humanos no supondrá nada diferente. Al igual que hoy en día no existe demasiado problema en no saber la tendencia sexual de alguien solo con verlo, podría llegar el momento en el que no pase nada por no saber si con quien hablas es una IA o un humano. A lo mejor llegamos a un futuro en el que se estipule el derecho de las IA a no tener que definir su verdadera naturaleza para no ser discriminadas ¿Quién sabe?

Volvamos a la realidad: ¿Cómo las han hecho? Los ingenieros de NVDIA han utilizado las redes generativas adversarias (GAN) de Ian Goodfellow. Tenemos dos redes de-convolucionales (redes convolucionales invertidas), que juegan al ratón y al gato. Una genera rostros y la otra juzga la calidad de éstos, de modo que la primera intenta, a cada iteración, que la segunda no sea capaz de discernir si el rostro es real o no, mientras que la segunda es, a cada iteración, “mejor policía” identificando rostros falsos. Al final de esa competición tenemos rostros sumamente realistas que pasarían, como podemos ver, el Test de Turing de los rostros sin el mayor problema( Aquí nos explican muy bien cómo funcionan).


Somos excepcionalmente buenos reconociendo rostros. Igual que nuestra memoria para recordar los nombres de las personas que acabamos de conocer es muy mala, la de reconocer sus caras es excelente. Así, aunque no sepamos el nombre de alguien sí que solemos decir “su cara me suena”.

Durante mucho tiempo se pensó en la hipótesis de la célula de la abuela (también llamada neurona de Jennifer Aniston tras los estudios de Rodrigo Quiroga), sosteniendo que teníamos una neurona especializada en el reconocimiento de cada rostro que conocíamos. Tendríamos una neurona sólo para reconocer a Justin Bieber a Cristiano Ronaldo, a cada uno de nuestros amigos y, por supuesto, para nuestra abuelita. Pero la solución parecía poco elegante: ¿disponemos de un “almacén” de neuronas “vírgenes” a la espera de cada rostro que, potencialmente, pueda conocer en mi vida? Parece muy poco elegante aunque hay evidencia a favor (véanse los experimentos del equipo de Christof Koch, mentor de Quiroga), pero quizá se pueden ver las cosas de otra forma…

Los biólogos del Caltech Doris Tsao y Steven Le Chang establecieron un espacio de cincuenta dimensiones al que llamaron “espacio facial”. De esas cincuenta, destinaron la mitad a parámetros longitudinales de la cara (distancia entre los ojos, anchura de la nariz, etc.), y la otra a aspectos cualitativos (colores, texturas, etc.). Con ellos se pueden describir potencialmente cualquier nuevo rostro que uno pueda conocer. Por así decirlo, este espacio es una excelente “gramática generativa de rostros”. Para trabajar con un espacio así solo se necesita una red neuronal artificial de poco más de doscientas neuronas (concretamente 205)… y, ¡tachán, tachán! los resultados fueron bastante espectaculares.

Se monitorizó la actividad eléctrica de las áreas faciales de macacos mientras contemplaban imágenes de rostros y a partir de ella y con su “espacio facial”, el equipo de Tsao podía predecir el rostro que veía el mono con una gran precisión; incluso lo podía reconstruir hasta hacerlo indistinguible del original. Así, las neuronas no codificarían cada rostro, ni siquiera un rasgo concreto de cada rostro, sino solo un vector en ese espacio de cincuenta dimensiones. En la imagen vemos la enorme precisión de la predicción. Es, sin duda, un nuevo logro de la IA conexionista y, a nivel más general, de la teoría computacional de la mente. Aunque, poniéndonos en el peor de los casos, estuviésemos ante una caso de infradeterminación de teorías, es decir, que obtenemos los mismos resultados que la realidad utilizando un modelo erróneo, diferente al real, sería muy absurdo pensar que la realidad funciona de un modo radicalmente diferente a nuestro modelo. En el peor de los casos, por ahí deben ir los tiros. A día de hoy, negar que el cerebro procesa información va siendo cada vez más difícil. Nota final: y si generar caras mediante IA parece fascinante, Microsoft ya tiene lista una herramienta que genera imágenes de cualquier tipo a partir de instrucciones de texto:

Dan Dennett escribió en 1984 un ensayo titulado “Cognitive wheels: the frame problem of AI”, en donde expone de forma muy simpática una versión del frame problem.

Tenemos un robot (R1) al que le encomendamos una misión: tiene que entrar en una habitación para encontrar una batería con la que recargarse. Dicha batería está situada sobre una mesa con ruedas, pero en la misma mesa hay una bomba programada para explotar en pocos segundos. La misión sería un éxito si R1 sale de la habitación solo con la batería, dejando que la bomba explote dentro.

R1 no es todavía muy sofisticado. Con su software infiere que sacando la mesa, también se saca la batería, por lo que con su brazo mecánico arrastra la mesa fuera de la habitación. Desgraciadamente, al hacerlo también saca fuera la bomba que explota, haciendo saltar a R1 por los aires. Los ingenieros entonces desarrollan a R1D1, quien es capaz de inferir también las consecuencias secundarias de sus acciones. Entonces, el nuevo el robot se para delante de la mesa y se queda parado procesando todas las consecuencias de su acción. De nuevo, cuando acababa de inferir que sacar la mesa de la habitación no va a cambiar el color de las paredes y se estaba embarcando en la siguiente inferencia, la bomba explota.

Los ingenieros se dieron cuenta de que procesar todas las consecuencias secundarias de una acción es una tarea prácticamente infinita, no resoluble, desde luego, en los pocos segundos que nos deja la cuenta atrás de la bomba. Había que diseñar un nuevo robot que no se pare a sopesar todas y cada una de las consecuencias de sus acciones, sino solo las que son relevantes para solucionar la tarea encomendada. El color de las paredes es algo completamente intrascendente para sacar una batería sin que explote una bomba. Fabrican R2D1 y lo ponen en funcionamiento. El robot entra en la habitación, la observa un rato, sale y se queda parado procesando información. Los segundos pasan y los ingenieros le gritan desesperados que haga algo. R2D1 responde que ya lo está haciendo: se está dedicando a ir descartando todas y cada una de las consecuencias irrelevantes de todas y cada una de las acciones que pueden hacerse… La bomba vuelve a explotar.

¿Qué está pasando aquí? ¿Por qué los ingenieros fracasan una y otra vez? Los seres humanos tenemos una fantástica habilidad que todavía no se ha conseguido computar: saber diferenciar el grano de la paja, es decir, saber diferenciar lo relevante de lo irrelevante entre una inmensa cantidad de información recibida. Para Jerry Fodor esta es la pregunta clave de la psicología cognitiva. Si el mundo es una inmensa red causal en la que millones de procesos se causan unos a otros simultáneamente… ¿cómo hace nuestra mente para saber cuáles son los procesos relevantes para lo que quiere hacer? Y es que ese sigue siendo el gran problema para el diseño de máquinas inteligentes, por ejemplo, en el procesamiento de lenguaje natural.

Hay soluciones (o más bien intentos de solución), muy interesantes (e ingeniosos). Desde la perspectiva lógica, se han intentado realizar acotaciones para que el manejo de la información comience a ser manejable computacionalmente. La base está en pensar que no hay por qué saberlo todo ni con plena certeza. Nosotros, cuando nos movemos competentemente en nuestro entorno, rara vez sabemos con total seguridad lo que va a pasar aunque acertemos en un número razonable de ocasiones. Además, corregimos constantemente nuestras creencias en función de la nueva información que vamos recibiendo (es lo que va a llamarse razonamiento revisable o no monótono). Así, por ejemplo, a McCarthy se le ocurrió lo que denominó circunscripción: minimizar las extensiones de los predicados tanto como sea posible. Dicho de otro modo y con un ejemplo: lo normal, lo que pasaría en la mayor parte de los casos, es que si yo me encuentro con un cisne, éste sea de color blanco. Entonces yo partiré dando como verdadera la afirmación de que “todos los cisnes son blancos” y voy a pasar olímpicamente de las excepciones, porque aunque me arriesgue a fallar, acertaré en la mayoría de las veces. A esta idea puede unirse lo que también se ha llamado razonamiento prototípico no monótono, desarrollado por Tversky y Kahenman en 1983. Se trata de proponer un concepto prototípico, un ideal o arquetipo de cualquier objeto o suceso que queramos representar. La computadora ponderará si un nuevo objeto o suceso que se encuentra es una instancia del prototipo en función de lo que se le parezca. De este modo ahorramos mucha información, centralizando todo en un conjunto de patrones y siendo ciegos a todo lo demás. Se pierde realismo pero se acota muchísima información. Tengamos muy en cuenta esta paradoja: para ser competente el trabajo duro no está en saberlo todo, sino en ignorar todo menos lo estrictamente necesario.

Otra propuesta es la del razonamiento autoepistémico de Robert C. Moore (1983): consiste en que el computador opere como si supiera toda la información que hay que tener, aunque ésta sea incompleta. Es obrar del modo: “Dado lo que sé y no teniendo noticia de que esto no sea así, opero en consecuencia”. Esto se complementa muy bien con la famosa hipótesis del mundo cerrado (muy usada en bases de datos), que consiste además en sostener como falso todo lo que no se da implícitamente en la información disponible. Por ejemplo si tengo un horario de llegada de trenes y se me pregunta si va a venir un tren de Madrid a las 10:00 y en mi horario compruebo que no aparece ningún tren de Madrid a esa hora, concluyo que no, presuponiendo que mi horario es toda la información que existe acerca de la llegada de trenes a esa estación.

También tenemos la compleción definida por Clark en 1978: obrar como si las implicaciones fueran equivalencias. Lo explicamos: cuando tenemos un condicional (una estructura de la forma si A entones B), el antecedente (A) es condición suficiente para el consecuente (B), es decir, solo del hecho de que se de A, y sin que ocurra nada más, se dará B; pero el antecedente (A) no es condición necesaria para que se de el consecuente (B), es decir, B podría darse por otras causas diferentes a A. Por el contrario cuando hablamos de un bicondicional (una equivalencia), antecedente y consecuente son ambos causas necesarias y suficientes el uno del otro.  Por ejemplo si yo digo:

“Si llegas después de las siete estarás llegando tarde”

estaré enunciando una implicación pero, en el fondo, la puedo convertir en un bicondicional sin que pase, realmente, nada. Podría decir:

“Si y sólo si llegas después de las siete estarás llegando tarde”

es decir, que llegar después de las siete y llegar tarde es, exactamente lo mismo. Con ello nos estamos ahorrando computacionalmente una regla crucial en el razonamiento. La compleción es interesante además porque confundir implicaciones con equivalencias es un error común en nuestra forma ordinaria de razonar, tal como ya vimos hace algunos años con el experimento de Wason.

Y una nueva forma, de nuevo estipulada por McCarthy, es el llamado Axioma del Marco. Uno de los problemas que tenía el robot de Dennett era que cuando modificaba algo, tenía que verificar todo el entorno completo para ver si esa modificación había modificado algo más. El Axioma del Marco o también denominado Ley de Sentido Común de la Inercia, diría que lo normal es que nada cambie más que lo que que uno ha modificado, por lo que es buena estrategia obrar como si eso fuera siempre así, de modo que nos ahorramos analizar toda la realidad cada vez que modificamos una sola cosa.

Pero todavía hay más: estaría el denominado razonamiento sin riesgo, que consiste en que si tenemos dos opciones y aceptar una de ellas nos llevaría a consecuencias fatales, escogemos la otra. El claro ejemplo está en el término jurídico in dubio pro reo: ante la duda a favor del acusado. Encarcelar a un inocente nos parece algo muy injusto, por lo que, a falta de pruebas suficientes en su contra, sentenciamos su no culpabilidad.

Y, por supuesto, nos queda la forma más estudiada de razonamiento sin certezas ni información suficiente: el cálculo de probabilidades expresado en lógica mediante la lógica borrosa.  Ante varias opciones elijo la que, según mis cálculos, tenga más probabilidades de cumplirse, aceptando tanto que la probabilidad puede hacer que mi apuesta falle aún teniendo los datos a mi favor (los sucesos de cisne negro se dan por doquier), como que mis cálculos tampoco sean fiables dada la información disponible (el también llamado razonamiento por conjetura).

Entonces, con tantas estrategias diferentes, ¿se ha solucionado el frame problem? De ninguna manera. Todas ellas tienen serias limitaciones y defectos que solo las hacen válidas para casos muy concretos, de modo que lo difícil sigue siendo lo de siempre: generalizar. Todavía no hay estrategias que sirvan para más de un contexto específico. La Inteligencia Artificial General, por mucho que nos cuenten milongas, sigue muy lejos. Y es que, por lo menos a mí, me resulta muy llamativo lo terriblemente complejo que es hacer todo lo que nosotros hacemos ordinariamente con suma facilidad. La evolución, desde luego, hizo un buen trabajo con nuestra especie.